Leveraging the latent heat of phase change materials (PCMs) can reduce the peak temperatures and transient variations in temperature in electronic devices. But as the power levels increase, the thermal conduction pathway from the heat source to the heat sink limits the effectiveness of these systems. In this work, we evaluate embedding the PCM within the silicon device layer of an electronic device to minimize the thermal resistance between the source and the PCM to minimize this thermal resistance and enhance the thermal performance of the device. The geometry and material properties of the embedded PCM regions are optimized using a combination of parametric and machine learning algorithms. For a fixed geometry, considering commercially available materials, Solder 174 significantly outperforms other organic and metallic PCMs. Also with a fixed geometry, the optimal melting points to minimize the peak temperature is higher than the optimal melting point to minimize the amplitude of the transient temperature oscillation, and both optima increase with increasing heater power. Extending beyond conventional optimization strategies, genetic algorithms and particle swarm optimization with and without neural network surrogate models are used to enable optimization of many geometric and material properties. For the test case evaluated, the optimized geometries and properties are similar between all ML-assisted algorithms, but the computational time depends on the technique. Ultimately, the optimized design with embedded phase change materials reduces the maximum temperature rise by 19% and the fluctuations by up to 88% compared to devices without PCM.


翻译:利用相位变化材料(PCM)的潜热利用相位变化材料(PCM),可以降低峰值温度和电子设备温度的瞬变变化。但是,随着电量的增加,从热源到热水槽的热导导路径会限制这些系统的效力。在这项工作中,我们评估将PCM嵌入电子设备硅密设备层以尽量减少源与PCM之间的热阻力,以尽量减少源与PCM之间的热阻力,并增强设备的热性能。嵌入的PCM区域的几何和材料特性将结合参数和机器学习算法加以优化。对于固定的几何方法而言,考虑到商业上可得到的材料,Solder 174大大优于其他有机和金属的PCM。在固定的几何方法下,将最佳熔点降到峰值最小化电子设备,以尽量减少中位温度振荡的振荡力,同时提高设备的热度。超越常规优化战略、遗传算法和粒温优化,同时不使用神经网络模拟模型。对于固定的温度模型而言,Solder 174明显优于其他有机和金属的PCMMML阶段。在最优化的地理结构中,通过不作最优化阶段,通过最优化的计算,对各种地形和最优化材料进行了对比,从而可以优化地标定的体特性进行。

0
下载
关闭预览

相关内容

专知会员服务
112+阅读 · 2019年12月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年3月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月18日
VIP会员
相关资讯
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年3月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员