Many real-world problems (e.g., resource management, autonomous driving, drug discovery) require optimizing multiple, conflicting objectives. Multi-objective reinforcement learning (MORL) extends classic reinforcement learning to handle multiple objectives simultaneously, yielding a set of policies that capture various trade-offs. However, the MORL field lacks complex, realistic environments and benchmarks. We introduce a water resource (Nile river basin) management case study and model it as a MORL environment. We then benchmark existing MORL algorithms on this task. Our results show that specialized water management methods outperform state-of-the-art MORL approaches, underscoring the scalability challenges MORL algorithms face in real-world scenarios.


翻译:许多现实世界问题(例如资源管理、自动驾驶、药物发现)需要同时优化多个相互冲突的目标。多目标强化学习(MORL)将经典强化学习扩展至同时处理多个目标,生成一系列捕捉不同权衡策略的解决方案。然而,MORL领域目前缺乏复杂且真实的环境与基准测试。本研究引入尼罗河流域水资源管理案例,并将其建模为MORL环境,随后在此任务上对现有MORL算法进行基准评估。结果表明,专业的水资源管理方法优于当前最先进的MORL方法,这突显了MORL算法在现实场景中面临的可扩展性挑战。

0
下载
关闭预览

相关内容

CLIP通用提示学习的简要概述
专知会员服务
16+阅读 · 3月13日
【ECCV2022】对比视觉Transformer的在线持续学习
专知会员服务
23+阅读 · 2022年7月29日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员