The mechanism of our NN is very well in line with the results of the latest MIT brain plasticity study, in which researchers found that as a synapse strengthens, neighboring synapses automatically weaken themselves to compensate. Regarding the importance of this mechanism, Dr. Luo's team at Stanford University has put forward that competition regarding synapse formation for dendritic morphogenesis is crucial. We try to conduct research on the mechanism of failure in brain plasticity by model at the closure of critical period in details by contrasting with studies before. Cutting edge imaging and genetic tools are combined in their experimental studies, whereas our research lays more emphasis on the model, derivation and simulation of a new NN. In tests, which demonstrate that dendrite generation, to a certain extent, is curbed by synapse formation. Current and mnemonic brain plasticity as well as synaptic action range are also taken into account in the study. Furthermore, the frame of the new NN is based on current gradient informational and mnemonic negative and positive gradient informational synapse formation. The mnemonic gradient information needs to take into account the forgotten memory-astrocytic synapse formation memory persistence factor (including both negative and positive memories - i.e. the optimal gradient information so far and relatively inferior gradient information). We found that the astrocytic memory persistence factor, like the phagocytosis factor, produces the effect of reducing the local accumulation of synapses. The PNN in which only the synaptic phagocytosis effect is considered regardless of the gradients update, and whether the synaptic phagocytosis of different variables and synaptic positions is cancelled is determined by the correlation coefficient of the corresponding time interval, proves simple and effective.
翻译:我们的NN机制非常符合最新的麻省理工学院大脑可塑性研究的结果,研究人员在这项研究中发现,随着神经突触的加强,相邻的突触会自动削弱自我补偿。关于这个机制的重要性,鲁博士在斯坦福大学的团队已经指出,关于肿瘤性肿瘤发源的突触形成竞争至关重要。我们试图通过模型在关键时期结束时对大脑可塑性机率机制进行研究,具体细节与以前研究的变量进行比较。在实验研究中,将边缘成像和遗传工具结合在一起,而我们的研究则更加强调新NNN的模型、衍生和模拟。测试表明,在一定程度上,神经性生成受到神经性形成的影响。当前和脑神经性大脑的造型以及合成行动范围也被考虑在内。此外,新NNNF的框架以当前的梯度信息、负和正梯度变变变变变变变变变为基。我们发现,内变变变变变变变变的内化的内化性变化的内性变化性变化因子和变化性变化的内,其内化的内化的内化的内性变性变性变性变性变性变的内性信息是变的内化、内变的内化、内变的内变的内变的内性变的内性变的内变的内性变的内性、性变的内性变的内性、性变的内性变的内性变的内性、性、内性变的内变的内性变的内性变的内性、内性、内性化、内性化、内性、性、性、内性变的内性变的内性变的内性变的内性、内性变的内性、内性、内性、内性变的内的内化的内的内的内变的内的内的内的内的内的内性、内性、性、性、性、内性、内性、内性、内性、内性、内性、内性、内性变的内的内性、内性、内的内性、内的内性变的内性变的内性、内性变的内性化的内性、内性变的内性、内会性、内会性性