In this paper, we propose FedChain, a novel framework for federated-blockchain systems, to enable effective transferring of tokens between different blockchain networks. Particularly, we first introduce a federated-blockchain system together with a cross-chain transfer protocol to facilitate the secure and decentralized transfer of tokens between chains. We then develop a novel PoS-based consensus mechanism for FedChain, which can satisfy strict security requirements, prevent various blockchain-specific attacks, and achieve a more desirable performance compared to those of other existing consensus mechanisms. Moreover, a Stackelberg game model is developed to examine and address the problem of centralization in the FedChain system. Furthermore, the game model can enhance the security and performance of FedChain. By analyzing interactions between the stakeholders and chain operators, we can prove the uniqueness of the Stackelberg equilibrium and find the exact formula for this equilibrium. These results are especially important for the stakeholders to determine their best investment strategies and for the chain operators to design the optimal policy to maximize their benefits and security protection for FedChain. Simulations results then clearly show that the FedChain framework can help stakeholders to maximize their profits and the chain operators to design appropriate parameters to enhance FedChain's security and performance.


翻译:在本文中,我们提出Fed Chain,这是联结式连锁系统的新框架,可以在不同连锁系统之间有效转让标识。特别是,我们首先采用联结式连锁系统以及跨链转移协议,以便于链条之间安全、分散地转移标识。然后,我们为Fed Chain开发一个新的基于POS的共识机制,该机制可以满足严格的安全要求,防止各种特定连锁袭击,并取得与其他现有共识机制相比更为理想的业绩。此外,还开发了一个Stackelberg游戏模式,以审查和解决Fed Chain系统集中化的问题。此外,游戏模式可以加强Fed Chain的安全性和绩效。通过分析利益攸关方与链条操作者之间的互动,我们可以证明Stackelberg平衡的独特性,找到这一平衡的准确公式。这些结果对于利益攸关方确定最佳投资战略,对于链条操作者设计最佳政策以最大限度地扩大Fed Chain的收益和安全保护尤为重要。然后,模拟结果清楚地表明,Fedchain框架可以帮助利益攸关方最大限度地提高业绩和连锁操作者的能力。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
35+阅读 · 2019年11月7日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员