Constructing a robust dialogue system on spoken conversations bring more challenge than written conversation. In this respect, DSTC10-Track2-Task2 is proposed, which aims to build a task-oriented dialogue (TOD) system incorporating unstructured external knowledge on a spoken conversation, extending DSTC9-Track1. This paper introduces our system containing four advanced methods: data construction, weighted negative sampling, post-training, and style transfer. We first automatically construct a large training data because DSTC10-Track2 does not release the official training set. For the knowledge selection task, we propose weighted negative sampling to train the model more fine-grained manner. We also employ post-training and style transfer for the response generation task to generate an appropriate response with a similar style to the target response. In the experiment, we investigate the effect of weighted negative sampling, post-training, and style transfer. Our model ranked 7 out of 16 teams in the objective evaluation and 6 in human evaluation.
翻译:在谈话上构建一个强大的对话系统比书面对话更具有挑战性。 在这方面,提出了DSTC10-Track2-Talk2-Talsk2, 目的是建立一个任务导向对话系统,将无结构的外部知识包含在谈话上,扩展DSTC9-Track1。本文介绍了我们的系统,该系统包含四种先进方法:数据构建、加权负抽样、培训后和风格传输。我们首先自动构建一个大型培训数据,因为DSTC10-Track2 不发布正式培训集。关于知识选择任务,我们建议加权负抽样,以更精细化的方式培训模型。我们还为反应生成任务使用培训后和风格传输,以产生与目标响应类似的适当反应。在实验中,我们调查加权负抽样、后培训和风格传输的效果。我们的模型在目标评估中的16个小组中排第7位,在人类评估中排第6个小组。