In this paper, we investigate the non-stationary combinatorial semi-bandit problem, both in the switching case and in the dynamic case. In the general case where (a) the reward function is non-linear, (b) arms may be probabilistically triggered, and (c) only approximate offline oracle exists \cite{wang2017improving}, our algorithm achieves $\tilde{\mathcal{O}}(\sqrt{\mathcal{S} T})$ distribution-dependent regret in the switching case, and $\tilde{\mathcal{O}}(\mathcal{V}^{1/3}T^{2/3})$ in the dynamic case, where $\mathcal S$ is the number of switchings and $\mathcal V$ is the sum of the total ``distribution changes''. The regret bounds in both scenarios are nearly optimal, but our algorithm needs to know the parameter $\mathcal S$ or $\mathcal V$ in advance. We further show that by employing another technique, our algorithm no longer needs to know the parameters $\mathcal S$ or $\mathcal V$ but the regret bounds could become suboptimal. In a special case where the reward function is linear and we have an exact oracle, we design a parameter-free algorithm that achieves nearly optimal regret both in the switching case and in the dynamic case without knowing the parameters in advance.


翻译:在本文中,我们调查了非静止的组合组合半弯状问题, 包括切换案例和动态案例。 在一般情况下, (a) 奖赏功能是非线性功能, (b) 武器可能是概率触发的, (c) 只有近似离线质存在\cite{Wang2017改善} (c), 我们的算法达到了$\tilde{O{( sqrt=mathcal{S}T}), 在切换案例和动态案例中, 以分配为依存的 美元为基准的 。 在一般情况下, (a) 奖赏功能是非线性, (b) 武器可能是概率触发的, (b) 和 (c) 只有离线性果实的, (c) 和 美元是整数 。 我们进一步表明, 在另一个案子中, 我们的算法算法, 或直径直线性 函数是 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年6月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月22日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员