A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable. In this paper, we prove that for every fixed integer $k\ge 1$, there are only finitely many $k$-vertex-critical ($P_5$,gem)-free graphs and $(P_5,\overline{P_3+P_2})$-free graphs. To prove the results we use a known structure theorem for ($P_5$,gem)-free graphs combined with properties of $k$-vertex-critical graphs. Moreover, we characterize all $k$-vertex-critical ($P_5$,gem)-free graphs and $(P_5,\overline{P_3+P_2})$-free graphs for $k \in \{4,5\}$ using a computer generation algorithm.
翻译:图形 $G$ 如果 $G$ 具有色数 $k 美元, 但每正确引导的$G$ 的子图的色数小于 美元。 对 图形类的 $k$- verdex 关键图形的研究是算法图形理论中的一个重要主题, 因为如果在特定遗传图形类中的此类图表数量是有限的, 那么就会有一个多元时间算法来决定该类的图表是否为 $( k-1) 美元- 彩色。 在本文中, 我们证明对于每个固定的整数 $k\ $ 1 美元, 每个固定整数的 $K$- 美元 1 G$ 的色数小于 美元 美元 。 对图形( P_ 5, gem) 和 $( 5,\ overline { P_ +2} 美元- free 图表。 此外, 我们用所有 $k$- $- wexexx_ 5, $_ P___\_ p_ gage_ greal_ gmagn_ gal 5, $_ gal_ gma_ $_ p_ 5, =_ p_ p_ p_ p__ dal______ p_ drealg_ p_ degill_ degage_ dal_ dal_ sma_ dal_ greg_ sma_ sma_ sma_ dal_ dalgal_ sal_ sal_ 5, 5, =_ sal_ p_ greal_ p_ p_ p_ sal_ greg) a_ sal_ smaxm) agal_ sal_ sal_