We study the connections between three seemingly different combinatorial structures - "uniform" brackets in statistics and probability theory, "containers" in online and distributed learning theory, and "combinatorial Macbeath regions", or Mnets in discrete and computational geometry. We show that these three concepts are manifestations of a single combinatorial property that can be expressed under a unified framework along the lines of Vapnik-Chervonenkis type theory for uniform convergence. These new connections help us to bring tools from discrete and computational geometry to prove improved bounds for these objects. Our improved bounds help to get an optimal algorithm for distributed learning of halfspaces, an improved algorithm for the distributed convex set disjointness problem, and improved regret bounds for online algorithms against a smoothed adversary for a large class of semi-algebraic threshold functions.
翻译:我们研究了三个看起来不同的组合结构之间的联系 — — 统计和概率理论中的“统一”括号、在线和分布式学习理论中的“封闭器”和“combinator Macbeateh区域 ”, 或者离散和计算几何中的Mnets 。 我们发现这三个概念是单一组合属性的表现形式,可以按照Vapnik-Chervonenkis类型理论的统一框架来表达,以统一趋同。这些新的连接帮助我们从离散和计算几何学中引入工具,以证明这些天体的边框得到了改进。 我们改进的边框有助于为分布半空空间的学习找到最佳算法,为分布式矩形设置脱节问题改进了算法,并改进了线上算法的悔恨界限,以对抗大型半遗传临界值的平稳对立方。