Federated learning is a new machine learning paradigm. The goal is to build a machine learning model from the data sets distributed on multiple devices so-called an isolated data island, while keeping their data secure and private. Most existing federated learning benchmarks work manually splits commonly used public datasets into partitions to simulate real world isolated data island scenarios. Still, this simulation fails to capture real world isolated data island intrinsic characteristics. This paper presents a federated learning (FL) benchmark suite named FLBench. FLBench contains three domains: medical, financial, and AIoT. By configuring various domains, FLBench is qualified to evaluate federated learning systems and algorithms essential aspects, like communication, scenario transformation, privacy-preserving, data distribution heterogeneity, and cooperation strategy. Hence, it becomes a promising platform for developing novel federated learning algorithms. Currently, FLBench is open sourced and in fast evolution. We package it as an automated deployment tool. The benchmark suite is available from https://www.benchcouncil.org/flbench.html.
翻译:联邦学习是一种新型的机器学习模式。 目标是从在所谓的孤立数据岛的多功能设备上分布的数据集中建立一个机器学习模型, 同时保持数据安全和隐私。 大部分现有的联邦学习基准手工将常用的公共数据集分割成分区, 模拟真实的世界孤立数据岛情景。 但是, 模拟未能捕捉到真实世界孤立数据岛的内在特征。 本文展示了一个名为 FLBench 的联邦学习基准套件。 FLBench 包含三个领域: 医疗、 财务 和 AIoT 。 通过配置多个领域, FLBench 有资格评估联邦学习系统和算法的基本方面, 如通信、 情景转换、 隐私保护、 数据分配异质性与合作战略。 因此, FLBench 是开发新颖的联邦学习算法的一个很有希望的平台。 目前, FLBench是一个开放的来源和快速进化的。 我们将其包装成一个自动部署工具。 基准套件可从 https://www. bechuncil.org/ flbbebench. html 获得。