Many computer vision applications need to recover structure from imperfect measurements of the real world. The task is often solved by robustly fitting a geometric model onto noisy and outlier-contaminated data. However, recent theoretical analyses indicate that many commonly used formulations of robust fitting in computer vision are not amenable to tractable solution and approximation. In this paper, we explore the usage of quantum computers for robust fitting. To do so, we examine and establish the practical usefulness of a robust fitting formulation inspired by Fourier analysis of Boolean functions. We then investigate a quantum algorithm to solve the formulation and analyse the computational speed-up possible over the classical algorithm. Our work thus proposes one of the first quantum treatments of robust fitting for computer vision.
翻译:许多计算机视觉应用应用需要从真实世界不完善的测量中恢复结构。 任务往往通过将几何模型牢牢地安装在吵闹和外部污染的数据上来解决。 但是,最近的理论分析表明,许多常用的计算机视觉强装配方不适合可移植的解决办法和近似。 在本文中,我们探索量子计算机的使用情况,以进行强力安装。 为了这样做,我们研究并确定由Fourier对布林功能的分析所启发的强力配配方的实际效用。 然后,我们调查量子算法,以解决配方,并分析可超过经典算法的计算速度。 因此,我们的工作提出了第一批强力安装计算机视觉的量子处理方法之一。