Emotions are reactions that can be expressed through a variety of social signals. For example, anger can be expressed through a scowl, narrowed eyes, a long stare, or many other expressions. This complexity is problematic when attempting to recognize a human's expression in a human-robot interaction: categorical emotion models used in HRI typically use only a few prototypical classes, and do not cover the wide array of expressions in the wild. We propose a data-driven method towards increasing the number of known emotion classes present in human-robot interactions, to 28 classes or more. The method includes the use of automatic segmentation of video streams into short (<10s) videos, and annotation using the large set of widely-understood emojis as categories. In this work, we showcase our initial results using a large in-the-wild HRI dataset (UE-HRI), with 61 clips randomly sampled from the dataset, labeled with 28 different emojis. In particular, our results showed that the "skeptical" emoji was a common expression in our dataset, which is not often considered in typical emotion taxonomies. This is the first step in developing a rich taxonomy of emotional expressions that can be used in the future as labels for training machine learning models, towards more accurate perception of humans by robots.


翻译:情感是可以通过各种社会信号表达的反应。 例如, 愤怒可以通过一个 scowl 、 缩小眼睛、 长视、 或其他许多表达方式表达出来。 当试图识别人类在人类- 机器人互动中的表达方式时, 这种复杂性是成问题的: HRI 中所使用的绝对情感模型通常只使用几个原型类, 并不覆盖野生表达方式的广泛范围。 我们提出一种数据驱动方法, 将人类- 机器人互动中已知的情绪类数量增加到28类或28类以上。 这种方法包括将视频流自动分割成短( < 10 ) 视频, 以及使用大量被广泛理解的模版作为分类的批注。 在这项工作中, 我们展示我们的初步结果通常使用一个大型的在虚拟的HRI 数据集( UE- HRI ), 随机抽样的61个剪辑, 标记为28 种不同的感官。 特别是, 我们的结果显示“ 怀疑” emoji 是我们数据集中的第一个常见的表达方式, 在人类的模型中, 这个典型的感官学学学学学学学学学的模型通常被理解为是用来的。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Compact Embedding for Facial Expression Similarity
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员