We aim to improve the performance of multi-agent flocking behavior by quantifying the structural significance of each agent. We designed a confidence score(ConfScore) to measure the spatial significance of each agent. The score will be used by an auxiliary controller to refine the velocity of agents. The agents will be enforced to follow the motion of the leader agents whose ConfScores are high. We demonstrate the efficacy of the auxiliary controller by applying it to several existing algorithms including learning-based and non-learning-based methods. Furthermore, we examined how the auxiliary controller can help improve the performance under different settings of communication radius, number of agents and maximum initial velocity.


翻译:我们的目标是通过量化每个代理商的结构意义来改进多试剂群集行为的性能。 我们设计了一个信任评分(ConfScore)来衡量每个代理商的空间意义。 该评分将由辅助控制员用来改进代理商的速度。 代理商将被强制跟踪其分数高的领导代理商的动作。 我们通过将其应用到包括学习和非学习方法在内的若干现有算法中来证明辅助控制员的效力。 此外, 我们考察了辅助控制员如何在通信半径、代理人数量和最大初始速度的不同环境下帮助改进性能。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
155+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
3+阅读 · 2021年1月24日
Arxiv
5+阅读 · 2021年1月7日
Arxiv
31+阅读 · 2020年9月21日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
155+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2022年2月13日
Arxiv
3+阅读 · 2021年1月24日
Arxiv
5+阅读 · 2021年1月7日
Arxiv
31+阅读 · 2020年9月21日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Top
微信扫码咨询专知VIP会员