We propose an adaptive confidence interval procedure (CIP) for the coefficients in the normal linear regression model. This procedure has a frequentist coverage rate that is constant as a function of the model parameters, yet provides smaller intervals than the usual interval procedure, on average across regression coefficients. The proposed procedure is obtained by defining a class of CIPs that all have exact $1-\alpha$ frequentist coverage, and then selecting from this class the procedure that minimizes a prior expected interval width. Such a procedure may be described as "frequentist, assisted by Bayes" or FAB. We describe an adaptive approach for estimating the prior distribution from the data so that exact non-asymptotic $1-\alpha$ coverage is maintained. Additionally, in a "$p$ growing with $n$" asymptotic scenario, this adaptive FAB procedure is asymptotically Bayes-optimal among $1-\alpha$ frequentist CIPs.


翻译:我们建议对正常线性回归模型中的系数采用一个适应性信任间隔程序(CIP),该程序具有常客覆盖率,作为模型参数的函数而保持不变,但比通常的间隔间隔时间更短,平均跨回归系数。拟议程序是通过以下方式获得的:确定一类完全具有1美元/阿尔法元常客覆盖率的CIP,然后从这一类别中选择一个将先前预期的间隔宽度最小化的程序。这种程序可以称为“经常者,由Bayes或FAB协助”。我们描述一种适应性方法,用以根据数据估算先前的分配,从而保持准确的非被动的1美元/阿尔法元覆盖率。此外,在“美元与美元/阿尔法元的常客量化 CIP中,这一适应性FAB程序在1美元/阿尔法元常客量的1美元中,是“零位增长”的。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
161+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
161+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员