The latest advances of statistical physics have shown remarkable performance of machine learning in identifying phase transitions. In this paper, we apply domain adversarial neural network (DANN) based on transfer learning to studying non-equilibrium and equilibrium phase transition models, which are percolation model and directed percolation (DP) model, respectively. With the DANN, only a small fraction of input configurations (2d images) needs to be labeled, which is automatically chosen, in order to capture the critical point. To learn the DP model, the method is refined by an iterative procedure in determining the critical point, which is a prerequisite for the data collapse in calculating the critical exponent $\nu_{\perp}$. We then apply the DANN to a two-dimensional site percolation with configurations filtered to include only the largest cluster which may contain the information related to the order parameter. The DANN learning of both models yields reliable results which are comparable to the ones from Monte Carlo simulations. Our study also shows that the DANN can achieve quite high accuracy at much lower cost, compared to the supervised learning.
翻译:统计物理的最新进步显示了机器学习在确定阶段过渡方面的出色表现。 在本文中, 我们应用基于传输学习的域对称神经网络( DANN), 用于研究非平衡和平衡阶段过渡模型, 这些模型分别是渗透模型和定向渗透模型。 在 DANN 中, 只有一小部分输入配置( 2d 图像) 需要贴上标签, 这是自动选择的, 以便捕捉关键点 。 要学习 DP 模型, 这种方法通过一个迭接程序来改进, 确定临界点, 这是计算关键指数$\\ nu ⁇ perp} 美元的数据崩溃的先决条件 。 然后, 我们将 DANN 应用到一个双维的连接点, 其配置经过过滤, 仅包含可能包含与顺序参数有关的信息的最大组 。 DANN 学习这两个模型产生的可靠结果与蒙特卡洛 模拟的结果相当。 我们的研究还显示, DANN 与监督的学习相比, 能够实现相当高的精度, 低得多的成本 。