Dealing with missing values and incomplete time series is a labor-intensive and time-consuming inevitable task when handling data coming from real-world applications. Effective spatio-temporal representations would allow imputation methods to reconstruct missing temporal data by exploiting information coming from sensors at different locations. However, standard methods fall short in capturing the nonlinear time and space dependencies existing within networks of interconnected sensors and do not take full advantage of the available - and often strong - relational information. Notably, most of state-of-the-art imputation methods based on deep learning do not explicitly model relational aspects and, in any case, do not exploit processing frameworks able to adequately represent structured spatio-temporal data. Conversely, graph neural networks have recently surged in popularity as both expressive and scalable tools for processing sequential data with relational inductive biases. In this work, we present the first assessment of graph neural networks in the context of multivariate time series imputation. In particular, we introduce a novel graph neural network architecture, named GRIL, which aims at reconstructing missing data in the different channels of a multivariate time series by learning spatial-temporal representations through message passing. Preliminary empirical results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks with mean absolute error improvements often higher than 20%.


翻译:处理缺失的值值和不完全的时间序列是处理来自现实世界应用的数据时一个劳动密集和耗时的不可避免的任务。有效的时空表达方式将允许通过利用不同地点的传感器所提供的信息来进行估算,以重建缺失的时间数据。然而,标准方法在捕捉互联传感器网络中存在的非线性时间和空间依赖性方面不尽如人意,并且没有充分利用现有――而且往往是强有力的――关联信息。值得注意的是,基于深层次学习的多数最新估算方法并不明确地模拟关系方面,而且无论如何,也不利用能够充分代表结构化时空数据的处理框架。相反,图表神经网络最近作为表态和可扩展工具,在利用关系感带偏差偏差的传感器网络处理连续数据方面表现得很快,而且没有充分利用现有――而且往往是强大的――关系信息。在多变时间序列估算中,我们引入了一个新型的图形神经网络结构,名为GRIL,目的是通过不同的空间定位模型来重建缺失的数据,而不是通过不同的空间时间序列模型来展示一个不同的空间定位模型,从而展示了我们所缺的绝对时间序列。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
专知会员服务
61+阅读 · 2020年3月19日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
61+阅读 · 2020年1月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2021年7月5日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员