Context-based authentication is a method for transparently validating another device's legitimacy to join a network based on location. Devices can pair with one another by continuously harvesting environmental noise to generate a random key with no user involvement. However, there are gaps in our understanding of the theoretical limitations of environmental noise harvesting, making it difficult for researchers to build efficient algorithms for sampling environmental noise and distilling keys from that noise. This work explores the information-theoretic capacity of context-based authentication mechanisms to generate random bit strings from environmental noise sources with known properties. Using only mild assumptions about the source process's characteristics, we demonstrate that commonly-used bit extraction algorithms extract only about 10% of the available randomness from a source noise process. We present an efficient algorithm to improve the quality of keys generated by context-based methods and evaluate it on real key extraction hardware. Moonshine is a randomness distiller which is more efficient at extracting bits from an environmental entropy source than existing methods. Our techniques nearly double the quality of keys as measured by the NIST test suite, producing keys that can be used in real-world authentication scenarios.
翻译:基于环境的认证是透明地验证另一个装置是否合法加入基于位置的网络的一种方法。 设备可以通过不断收集环境噪音来相互匹配, 从而生成随机密钥, 而用户没有参与。 然而,我们对环境噪音采集的理论局限性的理解存在差距, 研究人员难以建立高效的算法, 用于取样环境噪音和从噪音中蒸馏密钥。 这项工作探索基于环境的认证机制的信息理论能力, 以便从已知的特性的环境噪音源中产生随机的比特字符串。 我们仅使用对源进程特性的微小假设, 我们证明常用的比特提取算法只能从源噪音过程中提取大约10%的可用随机性。 我们提出了一个高效的算法, 以提高基于环境噪音采集方法生成的钥匙的质量, 并评估真实的关键提取硬件。 月光是一种随机混乱, 比现有方法更高效地从环境的昆虫源中提取比点。 我们的技术几乎翻倍了由 NIST 测试套测量的钥匙的质量, 产生钥匙, 可用于真实世界的认证设想方案 。