Human creativity generates novel ideas to solve real-world problems. This thereby grants us the power to transform the surrounding world and extend our human attributes beyond what is currently possible. Creative ideas are not just new and unexpected, but are also successful in providing solutions that are useful, efficient and valuable. Thus, creativity optimizes the use of available resources and increases wealth. The origin of human creativity, however, is poorly understood, and semantic measures that could predict the success of generated ideas are currently unknown. Here, we analyze a dataset of design problem-solving conversations in real-world settings by using 49 semantic measures based on WordNet 3.1 and demonstrate that a divergence of semantic similarity, an increased information content, and a decreased polysemy predict the success of generated ideas. The first feedback from clients also enhances information content and leads to a divergence of successful ideas in creative problem solving. These results advance cognitive science by identifying real-world processes in human problem solving that are relevant to the success of produced solutions and provide tools for real-time monitoring of problem solving, student training and skill acquisition. A selected subset of information content (IC S\'anchez-Batet) and semantic similarity (Lin/S\'anchez-Batet) measures, which are both statistically powerful and computationally fast, could support the development of technologies for computer-assisted enhancements of human creativity or for the implementation of creativity in machines endowed with general artificial intelligence.


翻译:人类的创造力产生解决现实世界问题的新想法。 这给了我们改变周围世界和扩展我们人类属性超越目前可能性的能力。 创意思想不仅是新的、出乎意料的,而且成功地提供了有用、高效和有价值的解决方案。 因此,创造力优化了现有资源的利用,增加了财富。 然而,人类创造力的起源并不为人所熟知,而能够预测所产生理念成功与否的语义性措施目前并不为人所知。 在这里,我们通过使用基于WordNet3.1的49项语义学措施,分析现实世界环境中设计解决问题对话的数据集,并表明语义相似性的差异、信息内容增加以及多语种性预测所产生理念的成功。 客户的最初反馈还增强了信息内容,并导致在创造性问题的解决中成功想法的分歧。 通过确定与所产生解决方案成功相关的真实世界解决人类问题的进程,并为实时监测问题的解决、学生培训和技能获取提供工具。 特定的信息内容集集(IC Sanschez-Bate-Bate) 和快速计算技术的精度(IC- Indecial-deal-deal-deal-decideal-deal-deal-deal-deal-decience-destraude-de-de-de-de-deal-de-de)和Segidududuvidudududududucal-deal-de-de-de-de-de-de-de-de-de-deal-de-de-de-de-de-de-destedududududududududududududududududududududududududude)和S)。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
39+阅读 · 2020年9月6日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Visual Distant Supervision for Scene Graph Generation
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
4+阅读 · 2019年4月3日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员