The Mat{\'e}rn family of covariance functions has played a central role in spatial statistics for decades, being a flexible parametric class with one parameter determining the smoothness of the paths of the underlying spatial field. This paper proposes a new family of spatial covariance functions, which stems from a reparameterization of the generalized Wendland family. As for the Mat{\'e}rn case, the new class allows for a continuous parameterization of the smoothness of the underlying Gaussian random field, being additionally compactly supported. More importantly, we show that the proposed covariance family generalizes the Mat{\'e}rn model which is attained as a special limit case. The practical implication of our theoretical results questions the effective flexibility of the Mat{\'e}rn covariance from modeling and computational viewpoints. Our numerical experiments elucidate the speed of convergence of the proposed model to the Mat{\'e}rn model. We also inspect the level of sparseness of the associated (inverse) covariance matrix and the asymptotic distribution of the maximum likelihood estimator under increasing and fixed domain asymptotics. The effectiveness of our proposal is illustrated by analyzing a georeferenced dataset on maximum temperatures over the southeastern United States, and performing a re-analysis of a large spatial point referenced dataset of yearly total precipitation anomalies
翻译:数十年来,共变函数家族在空间统计中一直发挥着核心作用,这是一个灵活的参数级,有一个参数决定基础空间场路径的平滑性。本文件提出一个新的空间共变函数大家庭,其来源是宽广的温德兰家族的重新校准。关于马特伊特尔恩案,新类别允许连续参数化基底高斯随机场的平滑性,并获得更紧密的支持。更重要的是,我们表明,拟议的共变式家庭将马特伊特尔恩模型普遍化,这是一个特殊限值案例。我们理论结果的实际影响质疑马特尔特尔恩特尔克的共变异性从建模和计算观点中产生的有效灵活性。我们的数字实验阐明了拟议模型与马特尔特尔特尔恩案模型的趋同速度。我们还检查了相关(反)相异性矩阵的稀少程度,以及作为特殊限例案例的马特尔特尔特差模型在不断增长和固定的模型下的最大可能性估测度模型的分布。我们理论结果的实际影响着马特特伊特尔特尔夫特尔特尔特尔特尔基地平地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地对一个比数据进行着地基地基地分析,对一个比。我们地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基数据进行着地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地对地基地基地基地基地基地基数据的效用的分析,以进行地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基