The Mat{\'e}rn family of covariance functions has played a central role in spatial statistics for decades, being a flexible parametric class with one parameter determining the smoothness of the paths of the underlying spatial field. This paper proposes a new family of spatial covariance functions, which stems from a reparameterization of the generalized Wendland family. As for the Mat{\'e}rn case, the new class allows for a continuous parameterization of the smoothness of the underlying Gaussian random field, being additionally compactly supported. More importantly, we show that the proposed covariance family generalizes the Mat{\'e}rn model which is attained as a special limit case. The practical implication of our theoretical results questions the effective flexibility of the Mat{\'e}rn covariance from modeling and computational viewpoints. Our numerical experiments elucidate the speed of convergence of the proposed model to the Mat{\'e}rn model. We also inspect the level of sparseness of the associated (inverse) covariance matrix and the asymptotic distribution of the maximum likelihood estimator under increasing and fixed domain asymptotics. The effectiveness of our proposal is illustrated by analyzing a georeferenced dataset on maximum temperatures over the southeastern United States, and performing a re-analysis of a large spatial point referenced dataset of yearly total precipitation anomalies


翻译:数十年来,共变函数家族在空间统计中一直发挥着核心作用,这是一个灵活的参数级,有一个参数决定基础空间场路径的平滑性。本文件提出一个新的空间共变函数大家庭,其来源是宽广的温德兰家族的重新校准。关于马特伊特尔恩案,新类别允许连续参数化基底高斯随机场的平滑性,并获得更紧密的支持。更重要的是,我们表明,拟议的共变式家庭将马特伊特尔恩模型普遍化,这是一个特殊限值案例。我们理论结果的实际影响质疑马特尔特尔恩特尔克的共变异性从建模和计算观点中产生的有效灵活性。我们的数字实验阐明了拟议模型与马特尔特尔特尔恩案模型的趋同速度。我们还检查了相关(反)相异性矩阵的稀少程度,以及作为特殊限例案例的马特尔特尔特差模型在不断增长和固定的模型下的最大可能性估测度模型的分布。我们理论结果的实际影响着马特特伊特尔特尔夫特尔特尔特尔特尔基地平地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地对一个比数据进行着地基地基地分析,对一个比。我们地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基数据进行着地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地对地基地基地基地基地基地基数据的效用的分析,以进行地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基地基

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员