Rotation detection is a challenging task due to the difficulties of locating the multi-angle objects and separating them accurately and quickly from the background. Though considerable progress has been made, for practical settings, there still exist challenges for rotating objects with large aspect ratio, dense distribution and category extremely imbalance. In this paper, we propose an end-to-end refined single-stage rotation detector for fast and accurate positioning objects. Considering the shortcoming of feature misalignment in existing refined single-stage detector, we design a feature refinement module to improve detection performance by getting more accurate features. The key idea of feature refinement module is to re-encode the position information of the current refined bounding box to the corresponding feature points through feature interpolation to realize feature reconstruction and alignment. Extensive experiments on two remote sensing public datasets DOTA, HRSC2016 as well as scene text data ICDAR2015 show the state-of-the-art accuracy and speed of our detector. Code is available at https://github.com/Thinklab-SJTU/R3Det_Tensorflow.


翻译:由于难以定位多角天体并将其准确和迅速地与背景区分,轮调探测是一项艰巨的任务。虽然在实际环境方面已经取得了相当大的进展,但在旋转具有大宽度比率、密集分布和类别极不平衡的天体方面仍然存在挑战。在本文件中,我们提议为快速和准确定位天体提供一个端对端精细的单阶段旋转探测器。考虑到现有精细的单级探测器特征不匹配的缺点,我们设计了一个功能改进模块,通过获取更准确的特性改进模块来改进探测性能。功能改进模块的关键理念是通过特征内插将当前精细的捆绑框的位置信息重新编码为相应的特征点,以实现特征的重建和协调。关于两个遥感公共数据集DOTA、HRSC2016以及现场文本数据的大规模实验ICDAR2015显示我们探测器的状态-艺术准确性和速度。代码可在https://github.com/Tinklab-SJTU/R3D_Tensorflow查阅。

1
下载
关闭预览

相关内容

CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员