In the present work we study classifiers' decision boundaries via Brownian motion processes in ambient data space and associated probabilistic techniques. Intuitively, our ideas correspond to placing a heat source at the decision boundary and observing how effectively the sample points warm up. We are largely motivated by the search for a soft measure that sheds further light on the decision boundary's geometry. En route, we bridge aspects of potential theory and geometric analysis (Mazya, 2011, Grigoryan-Saloff-Coste, 2002) with active fields of ML research such as adversarial examples and generalization bounds. First, we focus on the geometric behavior of decision boundaries in the light of adversarial attack/defense mechanisms. Experimentally, we observe a certain capacitory trend over different adversarial defense strategies: decision boundaries locally become flatter as measured by isoperimetric inequalities (Ford et al, 2019); however, our more sensitive heat-diffusion metrics extend this analysis and further reveal that some non-trivial geometry invisible to plain distance-based methods is still preserved. Intuitively, we provide evidence that the decision boundaries nevertheless retain many persistent "wiggly and fuzzy" regions on a finer scale. Second, we show how Brownian hitting probabilities translate to soft generalization bounds which are in turn connected to compression and noise stability (Arora et al, 2018), and these bounds are significantly stronger if the decision boundary has controlled geometric features.
翻译:在目前的工作中,我们通过布朗运动过程研究环境数据空间中的分类者决定界限,以及相关的概率技术。直观地说,我们的想法相当于将热源放在决定边界上,观察抽样点的热度温度如何暖和起来。我们在很大程度上出于寻找软性措施的动机,该软性措施进一步揭示了决定边界的几何特征。在路线上,我们通过环境数据空间中的布朗运动以及相关的概率技术研究,研究分类者决定界限。我们利用诸如对抗性攻击/防御机制中活跃的ML研究领域(Mazya,2011年;Grigoryyan-Saloff-Coste,2002年),将潜在的理论和几何方面联系起来。首先,我们注重决定边界的几何特性,我们根据对抗性攻击/防御机制,观察决定边界的几何特性。实验性,我们观察到了不同的对抗性防御战略中某种能力趋势:决定边界因偏差的不平等(Ford et al, 2019);然而,我们比较敏感的热化度测量度度度度度度度度指标将这一分析延伸为这一分析,进一步揭示出一些非三维的以远程为基础的地理测量方法的地理和直径分的地理测量特征。在精确上,我们如何将决定界限变为直系的平平面上,我们如何将许多的直压。