The lambda-Pi-calculus modulo theory is a logical framework in which many logical systems can be expressed as theories. We present such a theory, the theory U, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory of U corresponding to each of these systems, and prove that, when a proof in U uses only symbols of a sub-theory, then it is a proof in that sub-theory.
翻译:兰巴达-皮卡卢斯摩杜洛理论是一个逻辑框架,许多逻辑体系都可以在其中表现为理论。 我们提出了这样一个理论,即U理论,其中可以表达若干逻辑体系的证明。 此外,我们确定了一个与上述每个体系相对应的U子理论,并证明,当在 U 中的证据只使用子理论的符号时,它就是该子理论中的证据。