Although deep learning has enabled a huge leap forward in image inpainting, current methods are often unable to synthesize realistic high-frequency details. In this paper, we propose applying super-resolution to coarsely reconstructed outputs, refining them at high resolution, and then downscaling the output to the original resolution. By introducing high-resolution images to the refinement network, our framework is able to reconstruct finer details that are usually smoothed out due to spectral bias - the tendency of neural networks to reconstruct low frequencies better than high frequencies. To assist training the refinement network on large upscaled holes, we propose a progressive learning technique in which the size of the missing regions increases as training progresses. Our zoom-in, refine and zoom-out strategy, combined with high-resolution supervision and progressive learning, constitutes a framework-agnostic approach for enhancing high-frequency details that can be applied to any CNN-based inpainting method. We provide qualitative and quantitative evaluations along with an ablation analysis to show the effectiveness of our approach. This seemingly simple, yet powerful approach, outperforms state-of-the-art inpainting methods. Our code is available in https://github.com/google/zoom-to-inpaint
翻译:虽然深层次的学习使得在图像绘制方面有了巨大的飞跃,但目前的方法往往无法综合现实的高频细节。 在本文中,我们建议应用超分辨率来粗略重建产出,高分辨率加以改进,然后将输出缩小到原始分辨率。通过向精细网络引入高分辨率图像,我们的框架能够重建由于光谱偏差通常会平滑的细微细节——神经网络倾向于更好地重建低频率,而不是高频率。为了协助对大型高尺度洞的精细网络进行培训,我们建议了一种渐进式学习技术,其中缺失区域的规模随着培训的进展而增加。我们的伸缩、精细和缩放战略,加上高分辨率的监督和进步学习,构成了一种框架性、不可知性的方法,用以加强高频率的细节,这些细节可以应用到任何有线电视新闻网的油漆方法中。我们提供了定性和定量评价,同时进行缩微分析,以显示我们的方法的有效性。这种看起来简单、但有力的方法,在培训过程中,缺失的区域规模随着培训的进展而不断提高。 我们的代码可以在 https://qubmatotototogoin 方法中提供。