We propose a new sensitivity analysis model that combines copulas and normalizing flows for causal inference under unobserved confounding. We refer to the new model as $\rho$-GNF ($\rho$-Graphical Normalizing Flow), where $\rho{\in}[-1,+1]$ is a bounded sensitivity parameter representing the backdoor non-causal association due to unobserved confounding modeled using the most well studied and widely popular Gaussian copula. Specifically, $\rho$-GNF enables us to estimate and analyse the frontdoor causal effect or average causal effect (ACE) as a function of $\rho$. We call this the $\rho_{curve}$. The $\rho_{curve}$ enables us to specify the confounding strength required to nullify the ACE. We call this the $\rho_{value}$. Further, the $\rho_{curve}$ also enables us to provide bounds for the ACE given an interval of $\rho$ values. We illustrate the benefits of $\rho$-GNF with experiments on simulated and real-world data in terms of our empirical ACE bounds being narrower than other popular ACE bounds.
翻译:我们提出一个新的敏感度分析模型,结合未观察到的混凝土和因果推断流的正常化。我们把新模型称为$$rho$-GNF ($rho$-GNF $\rho$-Graphical generalization trail)[1,+1]$($rho_in}[1,+1]美元),这是一个约束性敏感度参数,代表后门非焦炭协会,因为未观察到的混凝土模型使用最精密研究并广为流行的高斯阳极。具体地说,$rho$-GNF 使我们能够估算和分析前门因果效应或平均因果效应(ACE),作为$rho$的函数。我们称之为$rho ⁇ curve 美元。 $r_curve}让我们具体说明取消ACE(ACE) 所需的粘合体强度。我们称之为$rócurvele 值。此外,$r_curvef}也使我们能够提供ACE(Aral-gloanal) sual destal destal destal destal destal dislate)的好处。