We propose a logic of knowledge for impure simplicial complexes. Impure simplicial complexes represent synchronous distributed systems under uncertainty over which processes are still active (are alive) and which processes have failed or crashed (are dead). Our work generalizes the logic of knowledge for pure simplicial complexes, where all processes are alive, by Goubault et al. In our semantics, given a designated face in a complex, a formula can only be true or false there if it is defined. The following are undefined: dead processes cannot know or be ignorant of any proposition, and live processes cannot know or be ignorant of factual propositions involving processes they know to be dead. The semantics are therefore three-valued, with undefined as the third value. We propose an axiomatization that is a version of the modal logic S5. We also show that impure simplicial complexes correspond to certain Kripke models where agents' accessibility relations are equivalence relations on a subset of the domain only. This work extends a WoLLIC 21 conference publication with the same title.
翻译:我们为不纯化的简化综合体提出了一个知识逻辑。不纯化的简化综合体代表了在不确定情况下同步分布的系统,这些系统仍在运行(活的),以及哪些进程已经失败或崩溃(死)。我们的工作概括了纯简化综合体的知识逻辑,而所有进程都是活的。在我们的语义学中,鉴于一个复杂体中指定的面貌,一个公式只有在定义了时才是真实的或虚假的。以下是未定义的:死过程不能知道或不知道任何主张,而活过程不能知道或不知道涉及它们知道是死的过程的事实主张。因此,语义学有三种价值,没有被界定为第三个价值。我们提出一个分解法,这是模式逻辑S5的版本。我们还表明,不纯化的简化综合体与某些Kripke模型相对应,其中代理人的无障碍关系仅与域的某一子类具有等同关系。这项工作延续了WolLIC 21会议出版物的同一标题。