Adaptive control can address model uncertainty in control systems. However, it is preliminarily designed for tracking control. Recent advancements in the control of quadruped robots show that force control can effectively realize agile and robust locomotion. In this paper, we present a novel adaptive force-based control framework for legged robots. We introduce a new architecture in our proposed approach to incorporate adaptive control into quadratic programming (QP) force control. Since our approach is based on force control, it also retains the advantages of the baseline framework, such as robustness to uneven terrain, controllable friction constraints, or soft impacts. Our method is successfully validated in both simulation and hardware experiments. While the baseline QP control has shown a significant degradation in the body tracking error with a small load, our proposed adaptive force-based control can enable the 12-kg Unitree A1 robot to walk on rough terrains while carrying a heavy load of up to 6 kg (50% of the robot weight). When standing with four legs, our proposed adaptive control can even allow the robot to carry up to 11 kg of load (92% of the robot weight) with less than 5-cm tracking error in the robot height.


翻译:适应性控制可以解决控制系统中的模型不确定性。 但是, 它是初步设计用于跟踪控制的模式不确定性。 最近四重机器人控制的进展显示, 武力控制能够有效实现灵活和强大的移动。 在本文中, 我们为腿型机器人展示了一个新的适应性力量控制框架。 我们拟议的方法中引入了一个新的架构, 将适应性控制纳入四重程序( QP) 部队控制。 由于我们的方法以武力控制为基础, 它也保留了基线框架的优势, 如地形不均、可控制摩擦限制或软影响等的强力。 我们的方法在模拟和硬件实验中都得到了成功验证。 虽然基准QP控制显示, 以少量载荷在身体跟踪错误方面出现显著退化, 我们提议的适应性力量控制可以使12公斤的Unitele A1机器人在粗地形上行走,同时携带高达6公斤的重( 机器人重量的50%) 。 与四腿相比, 我们提议的适应性控制甚至允许机器人携带11公斤重( 机器人重量的92%) 机器人在5厘米高度以下的错误跟踪。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年7月25日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Arxiv
0+阅读 · 2022年2月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年7月25日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Top
微信扫码咨询专知VIP会员