With the wide application of Large Language Models (LLMs) such as ChatGPT, how to make the contents generated by LLM accurate and credible becomes very important, especially in complex knowledge-intensive tasks. In this paper, we propose a novel framework called Search-in-the-Chain (SearChain) to improve the accuracy, credibility and traceability of LLM-generated content for multi-hop question answering, which is a typical complex knowledge-intensive task. SearChain is a framework that deeply integrates LLM and information retrieval (IR). In SearChain, LLM constructs a chain-of-query, which is the decomposition of the multi-hop question. Each node of the chain is a query-answer pair consisting of an IR-oriented query and the answer generated by LLM for this query. IR verifies, completes, and traces the information of each node of the chain, so as to guide LLM to construct the correct chain-of-query, and finally answer the multi-hop question. SearChain makes LLM change from trying to give a answer to trying to construct the chain-of-query when faced with the multi-hop question, which can stimulate the knowledge-reasoning ability and provides the interface for IR to be deeply involved in reasoning process of LLM. IR interacts with each node of chain-of-query of LLM. It verifies the information of the node and provides the unknown knowledge to LLM, which ensures the accuracy of the whole chain in the process of LLM generating the answer. Besides, the contents returned by LLM to the user include not only the final answer but also the reasoning process for the question, that is, the chain-of-query and the supporting documents retrieved by IR for each node of the chain, which improves the credibility and traceability of the contents generated by LLM. Experimental results show SearChain outperforms related baselines on four multi-hop question-answering datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月12日
Arxiv
32+阅读 · 2022年12月20日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员