Local samplers are algorithms that generate random samples based on local queries to high-dimensional distributions, ensuring the samples follow the correct induced distributions while maintaining time complexity that scales locally with the query size. These samplers have broad applications, including deterministic approximate counting [He, Wang, Yin, SODA '23; Feng et.al., FOCS '23], sampling from infinite or high-dimensional Gibbs distributions [Anand, Jerrum, SICOMP '22; He, Wang, Yin, FOCS '22], and providing local access to large random objects [Biswas, Rubinfield, Yodpinyanee, ITCS '20]. In this work, we present local samplers for Gibbs distributions of spin systems. Specifically, we design linear-time local samplers for: - permissive spin systems, including the first local sampler for the Ising model in near-critical regimes; - truly repulsive spin systems, represented by the first local sampler for uniform proper $q$-colorings, with $q=O(\Delta)$ colors on graphs with maximum degree $\Delta$. These local samplers are efficient beyond the "local uniformity" threshold, which imposes unconditional marginal lower bounds -- a key assumption required by all prior local samplers. Our results show that, in general, local sampling is not significantly harder than global sampling for spin systems. As an application, our results also imply local algorithms for probabilistic inference in the same near-critical regimes.
翻译:局部采样器是一类基于对高维分布进行局部查询来生成随机样本的算法,确保样本遵循正确的诱导分布,同时保持时间复杂度随查询规模局部扩展。这些采样器具有广泛的应用,包括确定性近似计数[He, Wang, Yin, SODA '23; Feng et.al., FOCS '23]、从无限或高维吉布斯分布中采样[Anand, Jerrum, SICOMP '22; He, Wang, Yin, FOCS '22],以及为大型随机对象提供局部访问[Biswas, Rubinfield, Yodpinyanee, ITCS '20]。在本工作中,我们为自旋系统的吉布斯分布提出了局部采样器。具体而言,我们设计了以下线性时间局部采样器:- 许可性自旋系统,包括首个适用于近临界区域伊辛模型的局部采样器;- 真实排斥性自旋系统,以首个适用于均匀真$q$-着色的局部采样器为代表,该采样器在最大度为$\Delta$的图上使用$q=O(\Delta)$种颜色。这些局部采样器在超越"局部均匀性"阈值时依然高效,该阈值要求无条件边际下界——这是所有先前局部采样器所需的关键假设。我们的结果表明,一般而言,对于自旋系统,局部采样并不显著难于全局采样。作为应用,我们的结果也暗示了在相同近临界区域进行概率推断的局部算法。