Regular convergence, together with various other types of convergence, has been studied since the 1970s for the discrete approximations of linear operators. In this paper, we consider the eigenvalue approximation of compact operators whose spectral problem is equivalent to the eigenvalue problem of some holomophic Fredholm operator function. Focusing on the finite element methods (conforming, non-conforming, discontinuous Galerkin, etc.), we show that the regular convergence of discrete holomorphic operator functions follows from the approximation property of the finite element spaces and the point convergence of the discrete operators in a suitable Sobolev space. The convergence for eigenvalues is then obtained using the discrete approximation theory for the eigenvalue problems of holomorphic Fredholm operator functions. The result can be used to show the convergence of many finite element methods for eigenvalue problems such as the Dirhcilet eigenvalue problem and the biharmonic eigenvalue problem.
翻译:自1970年代以来,对线性操作员离散近似值的定期趋同和各种其他趋同进行了研究。在本文中,我们考虑了紧凑操作员的光值近似值,其光谱问题相当于某些全息式Fredholm操作员功能的偏移值问题。我们侧重于有限元素方法(兼容、不兼容、不连续的Galerkin等),我们表明离散的全息性操作员功能的经常趋同性与有限元素空间的近近似性以及离散操作员在合适的索博列夫空间的点趋同性。然后利用离散式近似理论,对全息式Fredholm操作员功能的偏移值问题进行趋同。结果可以用来表明诸如Dirhcilet egenvalue 问题和双合性电子值问题等许多关于电子价值问题的有限要素方法的趋同性。