Physarum Polycephalum is a slime mold that can solve shortest path problems. A mathematical model based on Physarum's behavior, known as the Physarum Directed Dynamics, can solve positive linear programs. In this paper, we present a family of Physarum-based dynamics extending the previous work and introduce a new algorithm to solve positive Semi-Definite Programs (SDP). The Physarum dynamics are governed by orthogonal projections (w.r.t. time-dependent scalar products) on the affine subspace defined by the linear constraints. We present a natural generalization of the scalar products used in the LP case to the matrix space for SDPs, which boils down to the linear case when all matrices in the SDP are diagonal, thus, representing an LP. We investigate the behavior of the induced dynamics theoretically and experimentally, highlight challenges arising from the non-commutative nature of matrix products, and prove soundness and convergence under mild conditions. Moreover, we consider a more abstract view on the dynamics that suggests a slight variation to guarantee unconditional soundness and convergence-to-optimality. By simulating these dynamics using suitable discretizations, one obtains numerical algorithms for solving positive SDPs, which have applications in discrete optimization, e.g., for computing the Goemans-Williamson approximation for MaxCut or the Lovasz theta number for determining the clique/chromatic number in perfect graphs.
翻译:Physarum Polycephalum 是一个可以解决最短路径问题的粘泥模型。 基于 Physarum 行为的数学模型, 称为 Physarum 定向动力学, 可以解决正线性线性程序。 在本文中, 我们展示了一个基于Physarum 的动态学大家庭, 扩展了先前的工作, 并引入了一种新的算法, 以解决正半线性半线性程序( SDP ) 。 Physarum 动态学由直线限制定义的离子空间( w.r.t.r. 取决于时间的离心性剖析器产品) 的正方形预测来管理。 此外, 我们考虑了一个更抽象的动态学观点, 显示LPasecase 案件所用的缩略图产品在SDP 矩阵空间中被自然地概括化, 也就是当SDP的所有矩阵都处于对立时, 我们从理论上和实验的角度来调查导引动的动态学行为, 突出由矩阵产品非对等特性特性性质产生的挑战, 或者在温条件下的直流化和趋一致。 我们还化的Sqlationalation- dalationalizalal-, adlialation 。 我们通过这些精确的精确化应用了这些精确性, 的精确性, 的Sqivalationalationalational- degalational- smaps