Over-complete systems of vectors, or in short, frames, play the role of analog codes in many areas of communication and signal processing. To name a few, spreading sequences for code-division multiple access (CDMA), over-complete representations for multiple-description (MD) source coding, space-time codes, sensing matrices for compressed sensing (CS), and more recently, codes for unreliable distributed computation. In this survey paper we observe an information-theoretic random-like behavior of frame subsets. Such sub-frames arise in setups involving erasures (communication), random user activity (multiple access), or sparsity (signal processing), in addition to channel or quantization noise. The goodness of a frame as an analog code is a function of the eigenvalues of a sub-frame, averaged over all sub-frames. For the highly symmetric class of Equiangular Tight Frames (ETF), as well as for other "near ETF" frames, we show that the empirical eigenvalue distribution of a randomly-selected sub-frame (i) is asymptotically indistinguishable from Wachter's MANOVA distribution; and (ii) exhibits a universal convergence rate to this limit that is empirically indistinguishable from that of a matrix sequence drawn from MANOVA (Jacobi) ensembles of corresponding dimensions. Some of these results are shown via careful statistical analysis of empirical evidence, and some are proved analytically using random matrix theory arguments of independent interest. The goodness measures of the MANOVA limit distribution are better, in a concrete formal sense, than those of the Marchenko-Pastur distribution at the same aspect ratio, implying that deterministic analog codes are better than random (i.i.d.) analog codes. We further give evidence that the ETF (and near ETF) family is in fact superior to any other frame family in terms of its typical sub-frame goodness.
翻译:矢量的超完整系统, 或者在短框中, 发挥模拟代码在许多通信和信号处理领域的作用。 举几个例子, 传播代码配置多重访问( CDMA) 的序列、 多描述源编码( MD) 的超完整表达式、 空间时间代码、 压缩遥感( CS) 的感应矩阵, 以及最近的不可靠的分布计算代码。 在本调查文件中, 我们观察的是框架子集的信息- 理论随机相似的行为。 这种子框架出现在包含删除( 通信)、 随机用户活动( 多访问) 或宽度( 信号处理) 的设置中, 除了频道或量化的噪音之外, 传播代码。 一个框架作为模拟代码的超完整表达式表达式表达式, 一个子框架的亚值值值值值值值值值值, 在所有子框架中平均显示。 对于高度对齐的 Equia 直角框架( ETFTF ) 以及其它“ 最接近的 ETF” 框架, 我们显示的是, 随机选择的直径直径直径对等的子框架内部分析( 直径直径分析值分配的直径分析结果的数值分布值分配为OMA- 直径直径直径直径直线值分布为直线值分布为直线值分配。