Over-complete systems of vectors, or in short, frames, play the role of analog codes in many areas of communication and signal processing. To name a few, spreading sequences for code-division multiple access (CDMA), over-complete representations for multiple-description (MD) source coding, space-time codes, sensing matrices for compressed sensing (CS), and more recently, codes for unreliable distributed computation. In this survey paper we observe an information-theoretic random-like behavior of frame subsets. Such sub-frames arise in setups involving erasures (communication), random user activity (multiple access), or sparsity (signal processing), in addition to channel or quantization noise. The goodness of a frame as an analog code is a function of the eigenvalues of a sub-frame, averaged over all sub-frames. For the highly symmetric class of Equiangular Tight Frames (ETF), as well as for other "near ETF" frames, we show that the empirical eigenvalue distribution of a randomly-selected sub-frame (i) is asymptotically indistinguishable from Wachter's MANOVA distribution; and (ii) exhibits a universal convergence rate to this limit that is empirically indistinguishable from that of a matrix sequence drawn from MANOVA (Jacobi) ensembles of corresponding dimensions. Some of these results are shown via careful statistical analysis of empirical evidence, and some are proved analytically using random matrix theory arguments of independent interest. The goodness measures of the MANOVA limit distribution are better, in a concrete formal sense, than those of the Marchenko-Pastur distribution at the same aspect ratio, implying that deterministic analog codes are better than random (i.i.d.) analog codes. We further give evidence that the ETF (and near ETF) family is in fact superior to any other frame family in terms of its typical sub-frame goodness.


翻译:矢量的超完整系统, 或者在短框中, 发挥模拟代码在许多通信和信号处理领域的作用。 举几个例子, 传播代码配置多重访问( CDMA) 的序列、 多描述源编码( MD) 的超完整表达式、 空间时间代码、 压缩遥感( CS) 的感应矩阵, 以及最近的不可靠的分布计算代码。 在本调查文件中, 我们观察的是框架子集的信息- 理论随机相似的行为。 这种子框架出现在包含删除( 通信)、 随机用户活动( 多访问) 或宽度( 信号处理) 的设置中, 除了频道或量化的噪音之外, 传播代码。 一个框架作为模拟代码的超完整表达式表达式表达式, 一个子框架的亚值值值值值值值值值值, 在所有子框架中平均显示。 对于高度对齐的 Equia 直角框架( ETFTF ) 以及其它“ 最接近的 ETF” 框架, 我们显示的是, 随机选择的直径直径直径对等的子框架内部分析( 直径直径分析值分配的直径分析结果的数值分布值分配为OMA- 直径直径直径直径直线值分布为直线值分布为直线值分配。

0
下载
关闭预览

相关内容

信号处理期刊采用了理论与实践的各个方面的信号处理。它以原始研究工作,教程和评论文章以及实际发展情况为特色。它旨在将知识和经验快速传播给从事信号处理研究,开发或实际应用的工程师和科学家。该期刊涵盖的主题领域包括:信号理论;随机过程; 检测和估计;光谱分析;过滤;信号处理系统;软件开发;图像处理; 模式识别; 光信号处理;数字信号处理; 多维信号处理;通信信号处理;生物医学信号处理;地球物理和天体信号处理;地球资源信号处理;声音和振动信号处理;数据处理; 遥感; 信号处理技术;雷达信号处理;声纳信号处理;工业应用;新的应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/sigpro/
专知会员服务
52+阅读 · 2021年8月29日
专知会员服务
76+阅读 · 2021年3月16日
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
专知会员服务
43+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月19日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2021年8月29日
专知会员服务
76+阅读 · 2021年3月16日
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
专知会员服务
43+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员