We develop a broadly applicable class of coevolving latent space network with attractors (CLSNA) models, where nodes represent individual social actors assumed to lie in an unknown latent space, edges represent the presence of a specified interaction between actors, and attractors are added in the latent level to capture the notion of attractive and repulsive forces. We apply the CLSNA models to understand the dynamics of partisan polarization on social media, where we expect Republicans and Democrats to increasingly interact with their own party and disengage with the opposing party. Using longitudinal social networks from the social media platforms Twitter and Reddit, we investigate the relative contributions of positive (attractive) and negative (repulsive) forces among political elites and the public, respectively. Our goals are to disentangle the positive and negative forces within and between parties and explore if and how they change over time. Our analysis confirms the existence of partisan polarization in social media interactions among both political elites and the public. Moreover, while positive partisanship is the driving force of interactions across the full periods of study for both the public and Democratic elites, negative partisanship has come to dominate Republican elites' interactions since the run-up to the 2016 presidential election.
翻译:我们开发了一个广泛应用的潜潜潜空间网络,吸引者(CLSNA)模式,其中节点代表了假定处于未知潜在空间的单个社会行为者,边缘代表了行为者之间特定互动的存在,吸引者在潜层中添加了吸引者和令人厌恶的力量的概念。我们运用CLSNA模式来理解社交媒体中党派分化的动态,我们期待共和党和民主党与自己的政党日益互动,并与对立政党脱离接触。我们利用社交媒体平台Twitter和Reddit的纵向社会网络,我们调查政治精英和公众之间积极(吸引性)和消极(持久)力量的相对贡献。我们的目标是分解政党内部和政党之间的积极和消极力量,并探索它们是否和如何随时间变化。我们的分析证实在社会媒体互动中存在党派两极分化的现象。此外,积极的党派关系是公众和民主精英在全面研究期间互动的动力,我们调查政治精英和民主精英之间的积极(吸引性)和消极(永久)力量的相对贡献。我们的目标是,我们的目标是分解政党内部和政党内部的正向2016年的总统大选选举过渡以来的民主精英互动。