In this article, we study association between the structural connectome and cognitive profiles using a multi-response nonparametric regression model.The cognitive profiles are measured in terms of seven age-adjusted cognitive test scores. The structural connectomes are represented by undirected graphs. The connectivity properties of these graphs are available in terms of the nodal attributes. A collection of nodal centralities together can encode different patterns of connections in the brain network. In this article, we consider nine such attributes for each brain region.These nodal graph metrics may naturally be grouped together for each node, motivating us to introduce group sparsity for feature selection. We propose Gaussian RBF-nets with a novel group sparsity inducing prior to model the unknown mean functions. The covariance structure of the multivariate response is characterized in terms of a linear factor modeling framework. For posterior computation, we develop an efficient Markov chain Monte Carlo sampling algorithm. We show that the proposed method performs much better than all its competitors. Applying our proposed method to a Human Connectome Project (HCP) dataset, we identify the important brain regions and nodal attributes for cognitive functioning, as well as identify interesting low-dimensional dependency structures among the cognition related test scores. Keywords: Factor model; Group variable selection; High-dimension; Human Connectome Project (HCP); Markov chain Monte Carlo (MCMC); Neural network; Nonparametric inference; Radial basis network; Spike-and-slab prior; Variable selection.
翻译:在本篇文章中,我们使用多反应非参数回归模型研究结构连接体和认知剖面之间的关联性。 认知剖面以7个年龄调整的认知测试分数测量。 结构连接体由非方向的图形表示。 这些图形的连接特性以节点属性表示。 节点中心集合可以将大脑网络的不同连接模式编码起来。 在本条中, 我们考虑每个大脑区域的9个属性。 这些节点图形度指标可以自然地组合在一起, 激励我们引入组合宽度来选择特征。 我们提议高斯亚的 RBF- net, 以新组宽度表示, 在模拟未知的平均值函数之前, 以新的群度表示这些图形的连接体。 多变量反应的共变性结构以线性要素模型框架为特点。 对于后表计算, 我们开发了一个高效的Markov连锁 Monte Carlo的取样算法。 我们将拟议的方法应用到一个人类连接项目( HCP) 数据设置, 我们确定重要的大脑链路段选择系统; 高级网络选择基础: 高级网络; 高级测试基础; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 高级数据库; 用作。