Gene-disease associations are fundamental for the understanding of disease mechanisms and for the development of effective interventions and treatments. Identifying genes not yet associated with a disease due to lack of studies is a challenging task in which prioritization based on prior knowledge can result helpful. The computational search for new candidate disease genes may be eased by Positive-Unlabelled (PU) learning, the machine learning (ML) setting in which only a subset of instances are labelled as positive, while the rest of the data set is unlabelled. In this work, we propose a set of effective network-based features to be used in a novel Markov diffusion-based multi-class labelling strategy for putative disease gene discovery. The performances of the new labelling algorithm and the effectiveness of the proposed features have been tested on five different disease datasets using three ML algorithms. Such features have been compared against classical topological and functional/ontological features showing that they outperform the classical ones both in binary classification and in the multi-class labelling. Analogously, the predictive power of the integrated methodology in searching new disease genes has been found to be competitive against the state-of-the-art algorithms.


翻译:基因疾病协会是了解疾病机制和发展有效干预和治疗的基础。确定因缺乏研究而尚未与疾病相联系的基因是一项具有挑战性的任务,在这项工作中,根据先前的知识确定优先次序会有所助益。对新候选疾病基因的计算搜索可以通过积极-无标签(PU)学习来缓解,而机器学习(ML)设置仅将一组病例列为呈阳性,而其余数据集则不贴标签。在这项工作中,我们提出一套有效的基于网络的功能,用于新的马可夫传播基于扩散的多级标签战略,以发现假冒疾病基因。新的标签算法的性能和拟议特征的有效性已经用三种ML算法在五个不同的疾病数据集上进行了测试。这些特征与古典的地貌学和功能/肿瘤特征进行了比较,表明它们在二进制分类和多级标签中都超越了古典的特征。我们发现,在寻找新疾病基因的综合性方法的预测能力与州-艺术算法相比是竞争性的。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年2月7日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员