General hypergeometric distribution (GHGD) definition: from a finite space $N$ containing $n$ elements, randomly select totally $T$ subsets $M_i$ (each contains $m_i$ elements, $1 \geq i \geq T$), what is the probability that exactly $x$ elements are overlapped exactly $t$ times or at least $t$ times ($x_t$ or $x_{\geq t}$)? The GHGD described the distribution of random variables $x_t$ and $x_{\geq t}$. In our previous results, we obtained the formulas of mathematical expectation and variance for special situations ($T \leq 7$), and not provided proofs. Here, we completed the exact formulas of mean and variance for $x_t$ and $x_{\geq t}$ for any situation, and provided strict mathematical proofs. In addition, we give the asymptotic property of the variables. When the mean approaches to 0, the variance fast approaches to the value of mean, and actually, their difference is a higher order infinitesimal of mean. Therefore, when the mean is small enough ($<1$), it can be used as a fairly accurate approximation of variance.
翻译:一般超地球分布(GHD)定义:从含有美元元素的限定空间$n美元中,随机选择完全的美元美元子集(每组含有美元元素,$1 gq i\ geq T$),准确的美元元素重叠的准确值为美元美元一美元或至少美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元定义?温室气体D描述了随机变量美元一美元一美元、美元一美元一美元一美元一美元的分配情况。在我们以前的结果中,我们获得了特殊情况下的数学预期和差异的公式($T\leq 7美元),但没有提供证据。在这里,我们完成了任何情况下的平均值和差异的准确值为美元一美元一美元一美元,提供了严格的数学证明。此外,我们给出变量的微量属性。当平均值为0时,其差异会迅速接近平均值,而且实际上,其差异值也是相当精确的。因此,当其值是平均值时,其值是相当的。