Radical progress in the field of deep learning (DL) has led to unprecedented accuracy in diverse inference tasks. As such, deploying DL models across mobile platforms is vital to enable the development and broad availability of the next-generation intelligent apps. Nevertheless, the wide and optimised deployment of DL models is currently hindered by the vast system heterogeneity of mobile devices, the varying computational cost of different DL models and the variability of performance needs across DL applications. This paper proposes OODIn, a framework for the optimised deployment of DL apps across heterogeneous mobile devices. OODIn comprises a novel DL-specific software architecture together with an analytical framework for modelling DL applications that: (1) counteract the variability in device resources and DL models by means of a highly parametrised multi-layer design; and (2) perform a principled optimisation of both model- and system-level parameters through a multi-objective formulation, designed for DL inference apps, in order to adapt the deployment to the user-specified performance requirements and device capabilities. Quantitative evaluation shows that the proposed framework consistently outperforms status-quo designs across heterogeneous devices and delivers up to 4.3x and 3.5x performance gain over highly optimised platform- and model-aware designs respectively, while effectively adapting execution to dynamic changes in resource availability.


翻译:深层次学习(DL)领域的激进进步导致不同推论任务中出现前所未有的准确性,因此,在移动平台中部署DL模型对于开发下一代智能应用程序和广泛提供下一代智能应用程序至关重要,然而,由于移动设备系统差异巨大,不同DL模型的计算成本不同,以及不同DL应用程序的性能需求差异,目前DL模型的广泛和优化部署受到以下因素的阻碍:移动设备的系统差异性、不同DL模型的计算成本不同,以及DL应用程序的性能需求差异。本文提议OOODIn,一个在不同移动设备中优化部署DL应用程序的框架。OODIn包含一个新的DL特定软件架构,以及一个模拟DL应用程序的分析框架,这些架构:(1) 通过高度相近的多层设计来应对设备设备和DL模型资源和DL模型的变异性;以及(2) 通过为DL推理应用程序设计的多目标设计,对模型和系统级参数进行有原则的优化,以便使部署适应用户指定的性能要求和装置能力。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年3月22日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员