This paper is concerned with the numerical analysis of linear and nonlinear Schr{\"o}dinger equations with analytic potentials. While the regularity of the potential (and the source term when there is one) automatically conveys to the solution in the linear cases, this is no longer true in general in the nonlinear case. We also study the rate of convergence of the planewave (Fourier) discretization method for computing numerical approximations of the solution.
翻译:本文涉及对具有分析潜力的线性和非线性Schr/6'o}dinger方程式的数值分析。虽然潜在方程式的规律性(和有线性方程式时的源术语)自动传达给线性方程式的解决方案,但在非线性方程式中,情况已不复存在。我们还研究了计算解决方案数字近似值的平波(四波)离散法的趋同率。