Random access machines (RAMs) and random access stored-program machines (RASPs) are models of computing that are closer to the architecture of real-world computers than Turing machines (TMs). They are also convenient in complexity analysis of algorithms. The relationships between RAMs, RASPs and TMs are well-studied. However, clear relationships between their quantum counterparts are still missing in the literature. We fill in this gap by formally defining the models of quantum random access machines (QRAMs) and quantum random access stored-program machines (QRASPs) and clarifying the relationships between QRAMs, QRASPs and quantum Turing machines (QTMs). In particular, we show that $\textbf{P} \subseteq \textbf{EQRAMP} \subseteq \textbf{EQP} \subseteq \textbf{BQP} = \textbf{BQRAMP}$, where $\textbf{EQRAMP}$ and $\textbf{BQRAMP}$ stand for the sets of problems that can be solved by polynomial-time QRAMs with certainty and bounded-error, respectively. At the heart of our proof, is a standardisation of QTM with an extended halting scheme, which is of independent interest.


翻译:随机存取机(RAM)和随机存取存储程序机(RASP)是比图灵机(TM)更接近真实世界计算机结构的计算模型。它们也便于对算法进行复杂分析。 RAMs、 RASPs 和 TMs 之间的关系已经很好地研究。 然而,文献中仍然缺少它们的量对应方之间的明确关系。 我们通过正式定义量随机存取机(QRAMs) 和量随机存取机(QRASPs) 的模式来填补这一空白, 并澄清QRAMs、 QRASPs 和量图灵机(QTMs)之间的关系。 特别是, 我们显示 $\ textbff{P}\subsetbf{QRAMP}\subseteqseteqete \ textbff{BQ} =\ textbf{BARMP}QQ=\ textf{B{BQ} 和 $\ textbtremeal translate Q} QRQ} 我们 的系统, 和Attal QRMQ} 的利 的利 的系统, 它的利息是用来解决。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员