Random access machines (RAMs) and random access stored-program machines (RASPs) are models of computing that are closer to the architecture of real-world computers than Turing machines (TMs). They are also convenient in complexity analysis of algorithms. The relationships between RAMs, RASPs and TMs are well-studied. However, clear relationships between their quantum counterparts are still missing in the literature. We fill in this gap by formally defining the models of quantum random access machines (QRAMs) and quantum random access stored-program machines (QRASPs) and clarifying the relationships between QRAMs, QRASPs and quantum Turing machines (QTMs). In particular, we show that $\textbf{P} \subseteq \textbf{EQRAMP} \subseteq \textbf{EQP} \subseteq \textbf{BQP} = \textbf{BQRAMP}$, where $\textbf{EQRAMP}$ and $\textbf{BQRAMP}$ stand for the sets of problems that can be solved by polynomial-time QRAMs with certainty and bounded-error, respectively. At the heart of our proof, is a standardisation of QTM with an extended halting scheme, which is of independent interest.
翻译:随机存取机(RAM)和随机存取存储程序机(RASP)是比图灵机(TM)更接近真实世界计算机结构的计算模型。它们也便于对算法进行复杂分析。 RAMs、 RASPs 和 TMs 之间的关系已经很好地研究。 然而,文献中仍然缺少它们的量对应方之间的明确关系。 我们通过正式定义量随机存取机(QRAMs) 和量随机存取机(QRASPs) 的模式来填补这一空白, 并澄清QRAMs、 QRASPs 和量图灵机(QTMs)之间的关系。 特别是, 我们显示 $\ textbff{P}\subsetbf{QRAMP}\subseteqseteqete \ textbff{BQ} =\ textbf{BARMP}QQ=\ textf{B{BQ} 和 $\ textbtremeal translate Q} QRQ} 我们 的系统, 和Attal QRMQ} 的利 的利 的系统, 它的利息是用来解决。