Learning causal structure poses a combinatorial search problem that typically involves evaluating structures using a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize the process of causal structure learning. Rather than searching over causal structures directly, we train a variational inference model to predict the causal structure from observational/interventional data. Our inference model acquires domain-specific inductive bias for causal discovery solely from data generated by a simulator. This allows us to bypass both the search over graphs and the hand-engineering of suitable score functions. Moreover, the architecture of our inference model is permutation invariant w.r.t. the data points and permutation equivariant w.r.t. the variables, facilitating generalization to significantly larger problem instances than seen during training. On synthetic data and semi-synthetic gene expression data, our models exhibit robust generalization capabilities under substantial distribution shift and significantly outperform existing algorithms, especially in the challenging genomics domain.
翻译:学习因果结构是一个组合式的搜索问题, 通常涉及使用分数或独立测试来评估结构。 由此进行的搜索成本高昂, 设计适当的分数或测试以获取先前的知识是困难的。 在这项工作中, 我们提议对因果结构学习过程进行摊合。 我们不直接搜索因果结构, 而是训练一个变式推论模型, 以预测观察/ 干预数据的因果结构。 我们的推论模型只从模拟器生成的数据中获取特定领域的因果发现诱导偏差。 这使我们能够绕过图形上的搜索和适当得分函数的手工程。 此外, 我们的推论模型的结构是变量的变异( w.r. t.) 数据点和变异性( w.r. t.