We develop a practical approach to semidefinite programming (SDP) that includes the von Neumann entropy, or an appropriate variant, as a regularization term. In particular we solve the dual of the regularized program, demonstrating how a carefully chosen randomized trace estimator can be used to estimate dual gradients effectively. We also introduce specialized optimization approaches for common SDP, specifically SDP with diagonal constraint and the problem of the determining the spectral projector onto the span of extremal eigenvectors. We validate our approach on such problems with applications to combinatorial optimization and spectral embedding.
翻译:我们开发了一种实用的半定规划(SDP)方法,其中包括von Neumann熵或适当的变体作为正则化项。特别地,我们解决了规则化程序的对偶问题,演示如何使用精心选择的随机跟踪估计器有效地估计对偶梯度。我们还介绍了针对常见SDP的专门优化方法,特别是带有对角约束的SDP,以及确定极端特征向量的张量投影器的问题。我们在这些问题上验证了我们的方法,应用于组合优化和谱嵌入。