Modeling non-linear temporal trajectories is of fundamental interest in many application areas, such as in longitudinal microbiome analysis. Many existing methods focus on estimating mean trajectories, but it is also often of value to assess temporal patterns of individual subjects. Sparse principal components analysis (SFPCA) serves as a useful tool for assessing individual variation in non-linear trajectories; however its application to real data often requires careful model selection criteria and diagnostic tools. Here, we propose a Bayesian approach to SFPCA, which allows users to use the efficient leave-one-out cross-validation (LOO) with Pareto-smoothed importance sampling (PSIS) for model selection, and to utilize the estimated shape parameter from PSIS-LOO and also the posterior predictive checks for graphical model diagnostics. This Bayesian implementation thus enables careful application of SFPCA to a wide range of longitudinal data applications.
翻译:模拟非线性时间轨迹在许多应用领域具有根本意义,如纵向微生物分析。许多现有方法侧重于估计平均轨迹,但评估个别主体的时间模式往往也具有价值。粗化主要部件分析(SFPCA)是评估非线性轨迹个别变异的有用工具;然而,对真实数据的应用往往需要谨慎的模型选择标准和诊断工具。在这里,我们提议对SFCCA采取巴伊西亚办法,使用户能够使用Pareto-moded 重要性有效留置交叉校验(LOO)进行模型选择,并使用PSIS-LOO的估计形状参数,以及图形模型诊断的外观预测检查。因此,Bayesian采用这种方法,能够将SFCA仔细应用于广泛的纵向数据应用。