Functional principal component analysis (FPCA) has been widely used to capture major modes of variation and reduce dimensions in functional data analysis. However, standard FPCA based on the sample covariance estimator does not work well in the presence of outliers. To address this challenge, a new robust functional principal component analysis approach based on the functional pairwise spatial sign (PASS) operator, termed PASS FPCA, is introduced where we propose estimation procedures for both eigenfunctions and eigenvalues with and without measurement error. Compared to existing robust FPCA methods, the proposed one requires weaker distributional assumptions to conserve the eigenspace of the covariance function. In particular, a class of distributions called the weakly functional coordinate symmetric (weakly FCS) is introduced that allows for severe asymmetry and is strictly larger than the functional elliptical distribution class, the latter of which has been well used in the robust statistics literature. The robustness of the PASS FPCA is demonstrated via simulation studies and analyses of accelerometry data from a large-scale epidemiological study of physical activity on older women that partly motivates this work.


翻译:功能性主要组成部分分析(FPCA)被广泛用来捕捉主要变异模式,减少功能性数据分析的维度;然而,基于抽样共变估计值的标准FPCA在有外部线的情况下效果不佳;为了应对这一挑战,我们采用了基于功能性对称空间标志操作员(称为PASS FPCA)的新的强健功能性主要组成部分分析方法,其中我们提出了使用和不使用测量误差的对电子元功能和电子元值的估计程序;与现有的稳健的FPCA方法相比,拟议的FPCA方法需要较弱的分配假设来保护常变函数的隐蔽空间;特别是,采用一种称为功能性协调对称的微弱功能性对称(FCS)的分布类别,允许严重不对称,严格地大于功能性椭圆分布类,后者在稳健的统计文献中已很好地使用。PASIS FPCA通过模拟研究和分析关于老年妇女的大规模流行病学研究的获取的精确度数据,部分地证明了其是否可靠。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
116+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月10日
Single-frame Regularization for Temporally Stable CNNs
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
116+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员