Functional principal component analysis (FPCA) has been widely used to capture major modes of variation and reduce dimensions in functional data analysis. However, standard FPCA based on the sample covariance estimator does not work well in the presence of outliers. To address this challenge, a new robust functional principal component analysis approach based on the functional pairwise spatial sign (PASS) operator, termed PASS FPCA, is introduced where we propose estimation procedures for both eigenfunctions and eigenvalues with and without measurement error. Compared to existing robust FPCA methods, the proposed one requires weaker distributional assumptions to conserve the eigenspace of the covariance function. In particular, a class of distributions called the weakly functional coordinate symmetric (weakly FCS) is introduced that allows for severe asymmetry and is strictly larger than the functional elliptical distribution class, the latter of which has been well used in the robust statistics literature. The robustness of the PASS FPCA is demonstrated via simulation studies and analyses of accelerometry data from a large-scale epidemiological study of physical activity on older women that partly motivates this work.
翻译:功能性主要组成部分分析(FPCA)被广泛用来捕捉主要变异模式,减少功能性数据分析的维度;然而,基于抽样共变估计值的标准FPCA在有外部线的情况下效果不佳;为了应对这一挑战,我们采用了基于功能性对称空间标志操作员(称为PASS FPCA)的新的强健功能性主要组成部分分析方法,其中我们提出了使用和不使用测量误差的对电子元功能和电子元值的估计程序;与现有的稳健的FPCA方法相比,拟议的FPCA方法需要较弱的分配假设来保护常变函数的隐蔽空间;特别是,采用一种称为功能性协调对称的微弱功能性对称(FCS)的分布类别,允许严重不对称,严格地大于功能性椭圆分布类,后者在稳健的统计文献中已很好地使用。PASIS FPCA通过模拟研究和分析关于老年妇女的大规模流行病学研究的获取的精确度数据,部分地证明了其是否可靠。