Untrimmed videos on social media or those captured by robots and surveillance cameras are of varied aspect ratios. However, 3D CNNs usually require as input a square-shaped video, whose spatial dimension is smaller than the original. Random- or center-cropping may leave out the video's subject altogether. To address this, we propose an unsupervised video cropping approach by shaping this as a retargeting and video-to-video synthesis problem. The synthesized video maintains a 1:1 aspect ratio, is smaller in size and is targeted at video-subject(s) throughout the entire duration. First, action localization is performed on each frame by identifying patches with homogeneous motion patterns. Thus, a single salient patch is pinpointed per frame. But to avoid viewpoint jitters and flickering, any inter-frame scale or position changes among the patches should be performed gradually over time. This issue is addressed with a polyBezier fitting in 3D space that passes through some chosen pivot timestamps and whose shape is influenced by the in-between control timestamps. To corroborate the effectiveness of the proposed method, we evaluate the video classification task by comparing our dynamic cropping technique with random cropping on three benchmark datasets, viz. UCF-101, HMDB-51 and ActivityNet v1.3. The clip and top-1 accuracy for video classification after our cropping, outperform 3D CNN performances for same-sized random-crop inputs, also surpassing some larger random-crop sizes.


翻译:社交媒体或由机器人和监视摄像机拍摄的未加剪辑的视频具有不同的侧面比例。 然而, 3D CNN 通常要求输入一个方形视频, 其空间尺寸小于原版的方形视频。 随机或中剪辑可能会完全排除视频主题。 为了解决这个问题, 我们建议采用一种不受监督的视频裁剪方法, 将其塑造成一个重新定位和视频到视频合成问题。 合成视频保持1: 1 的侧面比例, 其尺寸较小, 在整个期间针对视频对象。 首先, 在每个框中进行行动本地化, 确定具有同质运动模式的补丁。 因此, 每个框中都会定位一个单一突出的补丁。 但是, 要避免看到亮亮和闪亮, 任何跨框架规模或补丁间位置的改变都应该逐渐进行。 这一问题在3D 空间中安装了一个多贝塞尔装置, 通过某些选定的活性节时间长度, 且其形状受控制时间间隔影响。 首先, 通过校验拟议方法的有效性,, 我们还评估一个更精确的 RCRM 3 样 3, 我们的SB 的模型, 的模型 的模型, 比较我们 3 的模型 的 的模型 3 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
干货 | 视频显著性目标检测(文末附有完整源码)
计算机视觉战队
38+阅读 · 2019年9月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
3+阅读 · 2021年10月14日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
干货 | 视频显著性目标检测(文末附有完整源码)
计算机视觉战队
38+阅读 · 2019年9月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员