Temporal stream logic (TSL) extends LTL with updates and predicates over arbitrary function terms. This allows for specifying data-intensive systems for which LTL is not expressive enough. In the semantics of TSL, functions and predicates are left uninterpreted. In this paper, we extend TSL with first-order theories, enabling us to specify systems using interpreted functions and predicates such as incrementation or equality. We investigate the satisfiability problem of TSL modulo the standard underlying theory of uninterpreted functions as well as with respect to Presburger arithmetic and the theory of equality: For all three theories, TSL satisfiability is highly undecidable. Nevertheless, we identify three fragments of TSL for which the satisfiability problem is (semi-)decidable in the theory of uninterpreted functions. Despite the high undecidability, we present an algorithm - which is not guaranteed to terminate - for checking the satisfiability of a TSL formula in the theory of uninterpreted functions and evaluate it: It scales well and is able to validate assumptions in a real-world system design.
翻译:时间流逻辑( TSL) 扩展 LTLL, 其更新内容和对任意功能术语的前提。 这样可以指定数据密集系统, 而LTL 不足以表达。 在 TSL 的语义中, 函数和前提没有被解释。 在本文中, 我们扩展 TSL 的一阶理论, 使我们能够使用解释函数和前提( 如递增或平等) 来指定系统。 我们调查了 TSL 的可坐性问题, TSL 的可坐性, 包括未解释函数的标准基本理论, 以及Presburger 算术和平等理论。 对于所有三种理论, TSLS 的可坐性是高度不可贬的。 然而, 我们找出了 TSL 的三个碎片, 其可坐性问题在未解释函数的理论中是( 半) 可变化的。 尽管高度不可变化性, 我们提出了一种算法 - 无法保证终止 - 用于检查未解释函数理论中 TSLF 公式的可容性,, 并评估它: 它的大小精准, 能够验证现实世界设计中的假设 。