Current capsule endoscopes and next-generation robotic capsules for diagnosis and treatment of gastrointestinal diseases are complex cyber-physical platforms that must orchestrate complex software and hardware functions. The desired tasks for these systems include visual localization, depth estimation, 3D mapping, disease detection and segmentation, automated navigation, active control, path realization and optional therapeutic modules such as targeted drug delivery and biopsy sampling. Data-driven algorithms promise to enable many advanced functionalities for capsule endoscopes, but real-world data is challenging to obtain. Physically-realistic simulations providing synthetic data have emerged as a solution to the development of data-driven algorithms. In this work, we present a comprehensive simulation platform for capsule endoscopy operations and introduce VR-Caps, a virtual active capsule environment that simulates a range of normal and abnormal tissue conditions (e.g., inflated, dry, wet etc.) and varied organ types, capsule endoscope designs (e.g., mono, stereo, dual and 360{\deg}camera), and the type, number, strength, and placement of internal and external magnetic sources that enable active locomotion. VR-Caps makes it possible to both independently or jointly develop, optimize, and test medical imaging and analysis software for the current and next-generation endoscopic capsule systems. To validate this approach, we train state-of-the-art deep neural networks to accomplish various medical image analysis tasks using simulated data from VR-Caps and evaluate the performance of these models on real medical data. Results demonstrate the usefulness and effectiveness of the proposed virtual platform in developing algorithms that quantify fractional coverage, camera trajectory, 3D map reconstruction, and disease classification.
翻译:用于诊断和治疗胃肠疾病的现有胶囊内窥镜和下一代机器人胶囊是复杂的网络物理物理模拟平台,必须协调复杂的软件和硬件功能。这些系统的理想任务包括视觉定位、深度估计、3D绘图、疾病检测和分解、自动导航、主动控制、路径实现和选择性治疗模块,如定向交付药物和生物检查取样等。数据驱动算法有望使胶囊内窥镜能够有许多先进的功能,但真实世界数据却难以获得。提供合成数据的物理现实模拟已经出现,成为数据驱动算法发展的一种解决办法。在这项工作中,我们为胶囊内镜内镜检查操作提供一个全面的模拟平台,并引入VR-Caps,一个虚拟活跃的胶囊环境,模拟一系列正常和不正常的组织条件(如:膨胀、干燥、湿等),以及各种器官类型、胶囊内镜设计(如:单体、立体、双向和360立体数据),以及从内部和外部磁力源的种类、数量分析,从而能够独立地进行当前和升级数据分析。V-R-A-A-RO-RO-RO-RO-RO-RO-RO-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-