Offensive Language detection in social media platforms has been an active field of research over the past years. In non-native English spoken countries, social media users mostly use a code-mixed form of text in their posts/comments. This poses several challenges in the offensive content identification tasks, and considering the low resources available for Tamil, the task becomes much harder. The current study presents extensive experiments using multiple deep learning, and transfer learning models to detect offensive content on YouTube. We propose a novel and flexible approach of selective translation and transliteration techniques to reap better results from fine-tuning and ensembling multilingual transformer networks like BERT, Distil- BERT, and XLM-RoBERTa. The experimental results showed that ULMFiT is the best model for this task. The best performing models were ULMFiT and mBERTBiLSTM for this Tamil code-mix dataset instead of more popular transfer learning models such as Distil- BERT and XLM-RoBERTa and hybrid deep learning models. The proposed model ULMFiT and mBERTBiLSTM yielded good results and are promising for effective offensive speech identification in low-resourced languages.


翻译:过去几年来,在社交媒体平台中,攻击性语言探测一直是积极研究的领域。在非本地英语语言国家,社交媒体用户大多在文章/评论中使用一种编码混合的文本形式。这给攻击性内容识别任务带来了若干挑战,而且考虑到泰米尔人可利用的资源很少,这项任务就更加困难了。本研究报告介绍了使用多种深层学习的广泛实验,并传输学习模型,以探测YouTube上的冒犯性内容。我们提出了一种新颖和灵活的选择性翻译和转写技术方法,以便从微调和融合多语种变异器网络(如BERT、Distil-BERT和XLLM-ROBERTA)中取得更好的结果。实验结果表明,ULMFiT是这项任务的最佳模式。最好的模式是泰米尔语代码混合数据集的ULMFi和MBERTBLISTM, 而不是诸如DIT-BERT和XLM-ROBERTA和混合深层学习模型等更受欢迎的转移学习模型。拟议的ULMiT和MTBERTLSTM模型取得了良好的结果,并且有望在低资源语言中有效地识别攻击性言。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2021年6月1日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
已删除
将门创投
4+阅读 · 2020年1月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
12+阅读 · 2019年2月28日
Arxiv
4+阅读 · 2019年2月18日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2021年6月1日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Top
微信扫码咨询专知VIP会员