We revisit the problem of controlling linear systems with quadratic cost under unknown dynamics with model-based reinforcement learning. Traditional methods like Optimism in the Face of Uncertainty and Thompson Sampling, rooted in multi-armed bandits (MABs), face practical limitations. In contrast, we propose an alternative based on the Confusing Instance (CI) principle, which underpins regret lower bounds in MABs and discrete Markov Decision Processes (MDPs) and is central to the Minimum Empirical Divergence (MED) family of algorithms, known for their asymptotic optimality in various settings. By leveraging the structure of LQR policies along with sensitivity and stability analysis, we develop MED-LQ. This novel control strategy extends the principles of CI and MED beyond small-scale settings. Our benchmarks on a comprehensive control suite demonstrate that MED-LQ achieves competitive performance in various scenarios while highlighting its potential for broader applications in large-scale MDPs.


翻译:本文重新审视了在未知动力学下通过基于模型的强化学习控制线性系统并最小化二次成本的问题。传统方法如面对不确定性的乐观策略和汤普森采样,其根源在于多臂老虎机问题,存在实际局限性。相比之下,我们提出了一种基于混淆实例原理的替代方案。该原理是多臂老虎机和离散马尔可夫决策过程中遗憾下界的基础,也是最小经验散度算法家族的核心,该家族算法在多种设定下以渐近最优性著称。通过结合线性二次调节器策略的结构以及灵敏度与稳定性分析,我们开发了MED-LQ。这一新颖的控制策略将混淆实例和最小经验散度的原理扩展到了小规模设定之外。我们在一个综合控制测试集上的基准实验表明,MED-LQ在各种场景下均取得了具有竞争力的性能,同时凸显了其在大规模马尔可夫决策过程中更广泛应用的潜力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员