Given a user-specified minimum degree threshold $\gamma$, a $\gamma$-quasi-clique is a subgraph $g=(V_g,E_g)$ where each vertex $v\in V_g$ connects to at least $\gamma$ fraction of the other vertices (i.e., $\lceil \gamma\cdot(|V_g|-1)\rceil$ vertices) in $g$. Quasi-clique is one of the most natural definitions for dense structures useful in finding communities in social networks and discovering significant biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive. In this paper, we design parallel algorithms for mining maximal quasi-cliques on G-thinker, a recent distributed framework targeting divide-and-conquer graph mining algorithms that decomposes the mining into compute-intensive tasks to fully utilize CPU cores. However, we found that directly using G-thinker results in the straggler problem due to (i) the drastic load imbalance among different tasks and (ii) the difficulty of predicting the task running time and the time growth with task-subgraph size. We address these challenges by redesigning G-thinker's execution engine to prioritize long-running tasks for mining, and by utilizing a novel timeout strategy to effectively decompose the mining workloads of long-running tasks to improve load balancing. While this system redesign applies to many other expensive dense subgraph mining problems, this paper verifies the idea by adapting the state-of-the-art quasi-clique algorithm, Quick, to our redesigned G-thinker. We improve Quick by integrating new pruning rules, and fixing some missed boundary cases that could lead to missed results. Extensive experiments verify that our new solution scales well with the number of CPU cores, achieving 201$\times$ runtime speedup when mining a graph with 3.77M vertices and 16.5M edges in a 16-node cluster.


翻译:根据用户指定的最小度阈值 $\ gamma美元, 一个 $\ gamma$- quasi clique 是一个基底结构最自然的定义 $g = (V_ g, E_ g) $g = (g) $g), 其中每个顶端 $v\ in V_ g$ 美元 连接到至少 $gamma$ 其它顶端的一小部分( 即$\ lceil\ gamma\ cdot (@V_ g ⁇ ) +rcelice $ g$) 。 Qasia- clodial- clodical clocal is a commission to commission to the load- dislational- dividate commission la la la commissional- commissional- we flickeral- lemental- disal- lax the lax lader- lader- liger liger- liger liger lader lax lax the lax lax lax lax lax lax lax i), 我们的最近发行平流平流平流平流流流流流流流流流流流算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
43+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
0+阅读 · 2021年2月10日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
43+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员