Monotonicity testing of Boolean functions on the hypergrid, $f:[n]^d \to \{0,1\}$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $n$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$. This complexity is independent of $n$, but has a suboptimal dependence on $d$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$ and $\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$-query testers, respectively. These testers have an almost optimal dependence on $d$, but a suboptimal polynomial dependence on $n$. In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity $O(\varepsilon^{-2} d^{1/2 + o(1)})$, independent of $n$. Up to the $d^{o(1)}$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $n$ yields a non-adaptive, one-sided $O(\varepsilon^{-2} d^{1/2 + o(1)})$-query monotonicity tester for Boolean functions $f:\mathbb{R}^d \to \{0,1\}$ associated with an arbitrary product measure.


翻译:一个基于$d$维超立方体的布尔函数的$d^{1/2+o(1)}$单调性测试器 摘要: 布尔函数在超立方体($f:[n]^d \to \{0,1\}$)上的单调性测试是一个经典的属性测试话题。确定这个问题的非自适应复杂度是一个重要的开放问题。对于任意的$n$,[Black-Chakrabarty-Seshadhri,SODA 2020]描绘了一个带有查询复杂度$\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$的测试器。这个复杂度不依赖于$n$,但具有次优的对$d$的依赖性。最近,[Braverman-Khot-Kindler-Minzer,ITCS 2023]和[Black-Chakrabarty-Seshadhri,STOC 2023]分别描述了带有$\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$和$\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$查询测试器。这些测试器在$d$上有一个几乎最优的依赖关系,但在$n$上具有次优的多项式依赖性。在本文中,我们描述了一个非自适应,单侧单调性测试器,其查询复杂度为$O(\varepsilon^{-2} d^{1/2 + o(1)})$,并且独立于$n$。在$d^{o(1)}$因子的范围内,我们的结果解决了超立方体上布尔函数单调性测试的非自适应复杂度问题。$n$的独立性产生了一个非自适应的、单侧的,基于任意乘积测度的布尔函数$f:\mathbb{R}^d \to \{0,1\}$的$O(\varepsilon^{-2} d^{1/2 + o(1)})$查询单调性测试器。

0
下载
关闭预览

相关内容

在数学中,布尔函数(Boolean function)描述如何基于对布尔输入的某种逻辑计算确定布尔值输出,它们在复杂性理论的问题和数字计算机的芯片设计中扮演基础角色。布尔函数的性质在密码学中扮演关键角色,特别是在对称密钥算法的设计中(参见S-box)。
专知会员服务
15+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
论文浅尝 | Neural-Symbolic Models for Logical Queries on KG
开放知识图谱
0+阅读 · 2022年10月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
代码解读 | VINS_Mono中的鱼眼相机模型
计算机视觉life
16+阅读 · 2019年9月10日
Github项目推荐 | gensim - Python中的主题建模
AI研习社
15+阅读 · 2019年3月16日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
论文浅尝 | Neural-Symbolic Models for Logical Queries on KG
开放知识图谱
0+阅读 · 2022年10月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
代码解读 | VINS_Mono中的鱼眼相机模型
计算机视觉life
16+阅读 · 2019年9月10日
Github项目推荐 | gensim - Python中的主题建模
AI研习社
15+阅读 · 2019年3月16日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员