Skeletal motion plays a vital role in human activity recognition as either an independent data source or a complement. The robustness of skeleton-based activity recognizers has been questioned recently, which shows that they are vulnerable to adversarial attacks when the full-knowledge of the recognizer is accessible to the attacker. However, this white-box requirement is overly restrictive in most scenarios and the attack is not truly threatening. In this paper, we show that such threats do exist under black-box settings too. To this end, we propose the first black-box adversarial attack method BASAR. Through BASAR, we show that adversarial attack is not only truly a threat but also can be extremely deceitful, because on-manifold adversarial samples are rather common in skeletal motions, in contrast to the common belief that adversarial samples only exist off-manifold. Through exhaustive evaluation and comparison, we show that BASAR can deliver successful attacks across models, data, and attack modes. Through harsh perceptual studies, we show that it achieves effective yet imperceptible attacks. By analyzing the attack on different activity recognizers, BASAR helps identify the potential causes of their vulnerability and provides insights on what classifiers are likely to be more robust against attack. Code is available at https://github.com/realcrane/BASAR-Black-box-Attack-on-Skeletal-Action-Recognition.


翻译:骨骼运动作为独立的数据源或补充物在人类活动的识别中发挥着关键作用。 骨骼活动识别器的强健性最近受到质疑, 这表明当攻击者完全了解识别器的完全知识时,他们很容易受到对抗性攻击。 然而, 白箱要求在多数情况下过于严格, 攻击并不真正具有威胁性。 在本文中, 我们显示这种威胁也存在于黑箱环境中。 为此, 我们提议了第一种黑箱对抗性攻击方法 。 我们通过巴萨尔, 表明对抗性攻击不仅真正是一种威胁, 而且可能极具有欺骗性, 因为使用自制性对抗性对立式的样本在骨骼运动中相当常见, 与关于对抗性标本只存在于非自制的通常看法相反。 我们通过详尽的评估和比较, 表明巴萨尔能够提供跨越模型、 数据 和攻击模式的成功攻击。 我们通过严谨的认知性研究, 显示它能够实现有效但无法察觉的攻击。 通过分析对不同活动识别器的攻击, 巴萨尔- 有助于识别其攻击的潜在原因。 ASARSAR- bor- co- codeal Col- co- supal am- supal- coal coal code is supliversal be be supal be supal be supal be supal be supal be supalbalbal be supal be supalbal- supal- suptalbal besal- salbalbalbalbal- supalbalbalbalbalbalbalbalbalbal- scode.

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
60+阅读 · 2021年3月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2021年3月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
相关资讯
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员