Text classifiers are at the core of many NLP applications and use a variety of algorithmic approaches and software. This paper introduces infrastructure and methodologies for text classifiers based on large-scale regular expressions. In particular, we describe how Facebook determines if a given piece of text - anything from a hashtag to a post - belongs to a narrow topic such as COVID-19. To fully define a topic and evaluate classifier performance we employ human-guided iterations of keyword discovery, but do not require labeled data. For COVID-19, we build two sets of regular expressions: (1) for 66 languages, with 99% precision and recall >50%, (2) for the 11 most common languages, with precision >90% and recall >90%. Regular expressions enable low-latency queries from multiple platforms. Response to challenges like COVID-19 is fast and so are revisions. Comparisons to a DNN classifier show explainable results, higher precision and recall, and less overfitting. Our learnings can be applied to other narrow-topic classifiers.


翻译:文本分类器是许多 NLP 应用程序的核心, 并使用多种算法方法和软件。 本文介绍了基于大规模常规表达式的文本分类器的基础设施和方法。 特别是, 我们描述Facebook如何确定某个文本( 从标签到文章的任何内容)是否属于CCOVID-19等狭隘的话题。 要充分定义一个专题并评估分类器性能, 我们使用人类引导的关键词发现迭代, 但不需要标签数据 。 对于 COVID-19, 我们建立两套常规表达器:(1) 66种语言, 精确度为99%, 并记得 > 50%, (2) 最常用的11种语言, 精确度为 > 90%, 记得 > 90% 。 常规表达器允许多个平台进行低延迟查询 。 对 COVID-19 等挑战的反应是快速的, 如此修改 。 与 DNN 分类器的比较显示可解释的结果、 更高精度和回忆, 并且不那么完美。 我们的学习方法可以适用于其他狭隘的分类器 。

0
下载
关闭预览

相关内容

【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
23+阅读 · 2020年4月7日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
3+阅读 · 2017年11月12日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员